A217781 Triangular array read by rows: T(n,k) is the number of n-node connected graphs with exactly one cycle of length k (and no other cycles) for n >= 1 and 1 <= k <= n.
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 3, 1, 1, 20, 16, 7, 4, 1, 1, 48, 37, 18, 9, 4, 1, 1, 115, 96, 44, 28, 10, 5, 1, 1, 286, 239, 117, 71, 32, 13, 5, 1, 1, 719, 622, 299, 202, 89, 45, 14, 6, 1, 1, 1842, 1607, 793, 542, 264, 130, 52, 17, 6, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 4, 3, 1, 1; 9, 6, 3, 1, 1; 20, 16, 7, 4, 1, 1; 48, 37, 18, 9, 4, 1, 1; 115, 96, 44, 28, 10, 5, 1, 1; 286, 239, 117, 71, 32, 13, 5, 1, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- Washington G. Bomfim, A picture of the twenty one unicycles with 3, 4, 5 and 6 vertices.
Crossrefs
Programs
-
Mathematica
nn=15;f[list_]:=Select[list,#>0&];t[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0==Series[t[x]-x Product[1/(1-x^i)^a[i],{i,1,nn}],{x,0,nn}],x];b=Table[a[n],{n,1,nn}]/.sol//Flatten;Map[f,Drop[Transpose[Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[b[[i]]x^(i*k),{i,1,nn}],{k,1,nn}][[j]],{j,1,n}],x],nn],{n,1,nn}]],1]]//Grid
-
PARI
\\ TreeGf is A000081 as g.f. TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} ColSeq(n,k)={my(t=TreeGf(max(0,n+1-k))); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2), -n)/2} M(n, m=n)={Mat(vector(m, k, ColSeq(n,k)~))} { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) } \\ Andrew Howroyd, Dec 03 2020
Formula
O.g.f. for column k is Z(D[k],A(x)). That is, we substitute for each variable s[i] in the cycle index of the dihedral group of order 2k the series A(x^i), where A(x) is the o.g.f. for A000081.
Comments