cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A027852 Number of connected functions on n points with a loop of length 2.

Original entry on oeis.org

0, 1, 1, 3, 6, 16, 37, 96, 239, 622, 1607, 4235, 11185, 29862, 80070, 216176, 586218, 1597578, 4370721, 12003882, 33077327, 91433267, 253454781, 704429853, 1962537755, 5479855546, 15332668869, 42983656210, 120716987723, 339596063606, 956840683968
Offset: 1

Views

Author

Christian G. Bower, Dec 14 1997

Keywords

Comments

Number of unordered pairs of rooted trees with a total of n nodes.
Equivalently, the number of rooted trees on n+1 nodes where the root has degree 2.
Number of trees on n nodes rooted at an edge. - Washington Bomfim, Jul 06 2012
Guy (1988) calls these tadpole graphs. - N. J. A. Sloane, Nov 04 2014
Number of unicyclic graphs of n nodes with a cycle length of two (in other words, a double edge). - Washington Bomfim, Dec 02 2020

Crossrefs

Column 2 of A033185 (forests of rooted trees), A217781 (unicyclic graphs), A339303 (unoriented linear forests) and A339428 (connected functions).

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> (add(b(i) *b(n-i), i=0..n) +`if`(irem(n, 2)=0, b(n/2), 0))/2: seq(a(n), n=1..50);  # Alois P. Heinz, Aug 22 2008, revised Oct 07 2011
    # second, re-usable version
    A027852 := proc(N::integer)
        local dh, Nprime;
        dh := 0 ;
        for Nprime from 0 to N do
            dh := dh+A000081(Nprime)*A000081(N-Nprime) ;
        end do:
        if type(N,'even') then
            dh := dh+A000081(N/2) ;
        end if;
        dh/2 ;
    end proc: # R. J. Mathar, Mar 06 2017
  • Mathematica
    Needs["Combinatorica`"];nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[2], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {2, nn}]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d b[d], {d, Divisors[j]}] b[n-j], {j, 1, n-1}])/(n-1)];
    a[n_] := (Sum[b[i] b[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, b[n/2], 0])/2;
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 30 2018, after Alois P. Heinz *)
  • PARI
    seq(max_n)= { my(V = f = vector(max_n), i=1,s); f[1]=1;
    for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n = 1, max_n, s = sum(k = 1, (n-1)/2, ( f[k] * f[n-k] ));
    if(n % 2 == 1, V[i] = s, V[i] = s + (f[n/2]^2 + f[n/2])/2); i++); V };
    \\ Washington Bomfim, Jul 06 2012 and Dec 01 2020

Formula

G.f.: A(x) = (B(x)^2 + B(x^2))/2 where B(x) is g.f. of A000081.
a(n) = Sum_{k=1..(n-1)/2}( f(k)*f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2+f(n/2) ) /2, where f(n) = A000081(n). - Washington Bomfim, Jul 06 2012 and Dec 01 2020
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.43992401257102530404090339... . - Vaclav Kotesovec, Sep 12 2014
2*a(n) = A000106(n) + A000081(n/2), where A(.)=0 if the argument is non-integer. - R. J. Mathar, Jun 04 2020

Extensions

Edited by Christian G. Bower, Feb 12 2002

A339428 Triangle read by rows: T(n,k) is the number of connected functions on n points with a loop of length k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 3, 1, 1, 20, 16, 9, 4, 1, 1, 48, 37, 23, 11, 4, 1, 1, 115, 96, 62, 35, 14, 5, 1, 1, 286, 239, 169, 97, 46, 18, 5, 1, 1, 719, 622, 451, 282, 145, 63, 21, 6, 1, 1, 1842, 1607, 1217, 792, 440, 206, 80, 25, 6, 1, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 03 2020

Keywords

Examples

			Triangle begins:
    1;
    1,   1;
    2,   1,   1;
    4,   3,   1,   1;
    9,   6,   3,   1,   1;
   20,  16,   9,   4,   1,  1;
   48,  37,  23,  11,   4,  1,  1;
  115,  96,  62,  35,  14,  5,  1, 1;
  286, 239, 169,  97,  46, 18,  5, 1, 1;
  719, 622, 451, 282, 145, 63, 21, 6, 1, 1;
  ...
		

Crossrefs

Programs

  • PARI
    \\ TreeGf is A000081 as g.f.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(sumdiv(k, d, eulerphi(d)*subst(r + O(x*x^(n\d)), x, x^d)^(k/d))/k, -n)}
    M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
    { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }

Formula

G.f. of k-th column: (1/k)*Sum_{d|k} phi(d) * r(x^d)^(k/d) where r(x) is the g.f. of A000081.

A339067 Triangle read by rows: T(n,k) is the number of linear forests with n nodes and k rooted trees.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 20, 30, 25, 14, 5, 1, 48, 74, 69, 44, 20, 6, 1, 115, 188, 186, 133, 70, 27, 7, 1, 286, 478, 503, 388, 230, 104, 35, 8, 1, 719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1, 1842, 3214, 3651, 3168, 2200, 1236, 560, 200, 54, 10, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 03 2020

Keywords

Comments

T(n,k) is the number of trees with n nodes rooted at two noninterchangeable nodes at a distance k-1 from each other.
Also the convolution triangle of A000081. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
    1;
    1,    1;
    2,    2,    1;
    4,    5,    3,    1;
    9,   12,    9,    4,   1;
   20,   30,   25,   14,   5,   1;
   48,   74,   69,   44,  20,   6,   1;
  115,  188,  186,  133,  70,  27,   7,  1;
  286,  478,  503,  388, 230, 104,  35,  8, 1;
  719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1;
  ...
		

Crossrefs

Columns 1..6 are A000081, A000106, A000242, A000300, A000343, A000395.
Row sums are A000107.
T(2n-1,n) gives A339440.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n, (add(add(d*b(d),
          d=numtheory[divisors](j))*b(n-j), j=1..n-1))/(n-1))
        end:
    T:= proc(n, k) option remember; `if`(k=1, b(n), (t->
          add(T(j, t)*T(n-j, k-t), j=1..n-1))(iquo(k, 2)))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Dec 04 2020
    # Using function PMatrix from A357368. Adds row and column for n, k = 0.
    PMatrix(10, A000081); # Peter Luschny, Oct 07 2022
  • Mathematica
    b[n_] := b[n] = If[n < 2, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)];
    T[n_, k_] := T[n, k] = If[k == 1, b[n], With[{t = Quotient[k, 2]}, Sum[T[j, t]*T[n - j, k - t], {j, 1, n - 1}]]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
  • PARI
    \\ TreeGf is A000081.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    ColSeq(n,k)={my(t=TreeGf(max(0,n+1-k))); Vec(t^k, -n)}
    M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
    { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }

Formula

G.f. of k-th column: t(x)^k where t(x) is the g.f. of A000081.
Sum_{k=1..n} k * T(n,k) = A038002(n). - Alois P. Heinz, Dec 04 2020

A000226 Number of n-node unlabeled connected graphs with one cycle of length 3.

Original entry on oeis.org

1, 1, 3, 7, 18, 44, 117, 299, 793, 2095, 5607, 15047, 40708, 110499, 301541, 825784, 2270211, 6260800, 17319689, 48042494, 133606943, 372430476, 1040426154, 2912415527, 8167992598, 22947778342, 64577555147, 182009003773, 513729375064, 1452007713130
Offset: 3

Views

Author

Keywords

Comments

Number of rooted trees on n+1 nodes where root has degree 3. - Christian G. Bower
Third column of A033185. - Michael Somos, Aug 20 2018
From Washington Bomfim, Dec 22 2020: (Start)
Number of forests of 3 rooted trees with a total of n nodes.
Number of unicyclic graphs with a cycle of length 3 and a total of n nodes.
(End)

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A033185 and A217781.
For n >= 3 a(n) = A217781(n, 3) = A058879(n, n-2) = A033185(n, 3).

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; unapply(add(b(k)*x^k, k=1..n),x) end: a:= n-> coeff(series((B(n-2)(x)^3+ 3*B(n-2)(x)* B(n-2)(x^2)+ 2*B(n-2)(x^3))/6, x=0, n+1), x,n): seq(a(n), n=3..40); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    terms = 30; r[] = 0; Do[r[x] = x *Exp[Sum[r[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms+3}]; A[x_] = (r[x]^3 + 3*r[x]*r[x^2] + 2*r[x^3])/6 + O[x]^(terms+3); Drop[CoefficientList[A[x], x], 3] (* Jean-François Alcover, Nov 23 2011, updated Jan 11 2018 *)
  • PARI
    seq(max_n) = {my(a = f = vector(max_n), s, D); f[1]=1;
    for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n=3,max_n,s=0;forpart(P=n,D=Set(P);if(#D==3,s+=f[P[1]]*f[P[2]]*f[P[3]];next());
    if(#D==1, s+= binomial(f[P[1]]+2, 3); next());
    if(P[1] == P[2], s += binomial(f[P[1]]+1, 2) * f[P[3]],
    s += binomial(f[P[2]]+1, 2) * f[P[1]]),[1,n],[3,3]); a[n] = s ); a[3..max_n] }; \\ Washington Bomfim, Dec 22 2020

Formula

G.f.: (r(x)^3+3*r(x)*r(x^2)+2*r(x^3))/6 where r(x) is g.f. for rooted trees (A000081).
a(n) = Sum_{j1+2j2+···= n} (Product_{i=1..n} binomial(A000081(i) + j_i -1, j_i)) [(4.27) of [F. Ruskey] with n replaced by n+1]. - Washington Bomfim, Dec 22 2020
a(n) ~ (A187770 + A339986) * A051491^n / (2 * n^(3/2)). - Vaclav Kotesovec, Dec 25 2020

Extensions

More terms from Vladeta Jovovic, Apr 19 2000

A000368 Number of connected graphs with one cycle of length 4.

Original entry on oeis.org

1, 1, 4, 9, 28, 71, 202, 542, 1507, 4114, 11381, 31349, 86845, 240567, 668553, 1860361, 5188767, 14495502, 40572216, 113743293, 319405695, 898288484, 2530058013, 7135848125, 20152898513, 56986883801
Offset: 4

Views

Author

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 69.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A217781.
Second diagonal of A058879.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[4], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {5, nn}]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; max = 30; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2 k), {k, 1, max}]; g81x4 = Sum[A000081[[k]]*x^(4 k), {k, 1, max}]; Drop[CoefficientList[ Series[(2*g81x4 + 3*g81x2^2 + 2*g81^2*g81x2 + g81^4)/8, {x, 0, max}], x], 4] (* Vaclav Kotesovec, Dec 25 2020 *)
  • PARI
    g(Q)={my(V=Vec(Q),D=Set(V),d=#D); if(d==4,return(3*f[D[1]]*f[D[2]]*f[D[3]]*f[D[4]]));
    if(d==1, return((f[D[1]]^4+2*f[D[1]]^3+3*f[D[1]]^2+2*f[D[1]])/8));
    my(k=1, m = #select(x->x == D[k],V), t); while(m==1, k++; m = #select(x->x == D[k], V)); t = D[1]; D[1] = D[k]; D[k] = t;
    if(d == 3, return( f[D[1]] * f[D[2]] * f[D[3]] * (3 * f[D[1]] + 1)/2 ) );
    if(m==3, return(f[D[1]]^2 * f[D[2]] * (f[D[1]] + 1)/2));
    ((3*f[D[2]]^2 + f[D[2]])*f[D[1]]^2 + (f[D[2]]^2 + 3*f[D[2]])*f[D[1]])/4 };
    seq(max_n) = { my(s, a = vector(max_n), U); f = vector(max_n); f[1] = 1;
    for(j=1, max_n - 1, if(j%100==0,print(j)); f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n=4, max_n, s=0; forpart(Q = n, if( (Q[4] > Q[3]) && (Q[3]-1 > Q[2]),
          U = U / (f[Q[4] + 1] * f[Q[3] - 1]) * f[Q[4]] * f[Q[3]],  U = g(Q)); s += U,
    [1,n],[4,4]); a[n] = s; if(n % 100 == 0, print(n": " s))); a[4..max_n] };
    \\ Washington Bomfim, Jul 19 2012 and Dec 22 2020

Formula

From Washington Bomfim, Jul 19 2012 and Dec 22 2020: (Start)
a(n) = Sum_{P}( g(Q) ), where P is the set of the partitions Q of n with 4 parts, Q with distinct parts D[1]..D[d], D[1] the part of maximum multiplicity m in Q, f(n) = A000081(n), and g(Q) given by,
| 3 * f(D[1]) * f(D[2]) * f(D[3]) * f(D[4]), if d = 4,
| (f(D[1])^4 + 2*f(D[1])^3 + 3*f(D[1])^2 + 2*f(D[1]))/8, if d = 1,
g(Q) = | f(D[1]) * f(D[2]) * f(D[3]) * (3 * f(D[1]) + 1)/2, if d = 3,
| ((3*f(D[2])^2+f(D[2]))*f(D[1])^2+(f(D[2])^2+3*f(D[2]))*f(D[1]))/4,
| if d=2, and m=2,
| f(D[1])^2 * f(D[2]) * (f(D[1]) + 1)/2, if d=2, and m=3.
(End)
G.f.: (2*t(x^4) + 3*t(x^2)^2 + 2*t(x)^2*t(x^2) + t(x)^4)/8 where t(x) is the g.f. of A000081. - Andrew Howroyd, Dec 03 2020
a(n) ~ (A187770 + A339986) * A051491^n / (2 * n^(3/2)). - Vaclav Kotesovec, Dec 25 2020

Extensions

More terms from Vladeta Jovovic, Apr 20 2000
Definition improved by Franklin T. Adams-Watters, May 16 2006
More terms from Sean A. Irvine, Nov 14 2010

A068051 Number of n-node connected graphs with one cycle, possibly of length 1 or 2.

Original entry on oeis.org

1, 2, 4, 9, 20, 49, 118, 300, 765, 1998, 5255, 14027, 37670, 102095, 278262, 763022, 2101905, 5816142, 16153148, 45017423, 125836711, 352723949, 991143727, 2791422887, 7877935985, 22275473767, 63096075118, 179012076933
Offset: 1

Views

Author

Christian G. Bower, Feb 12 2002

Keywords

Crossrefs

Cf. A217781.

Programs

  • Mathematica
    nn=20;t[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0==Series[t[x]-x Product[1/(1-x^i)^a[i],{i,1,nn}],{x,0,nn}],x];b=Table[a[n],{n,1,nn}]/.sol//Flatten;Map[Total,Drop[Transpose[Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[b[[i]]x^(i*k),{i,1,nn}],{k,1,nn}][[j]],{j,1,n}],x],nn],{n,1,nn}]],1]]  (* Geoffrey Critzer, Mar 24 2013 *)
  • PARI
    \\ TreeGf gives gf of A000081
    TreeGf(N)={my(A=vector(N, j, 1)); for(n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec((sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2)/2)} \\ Andrew Howroyd, Jun 20 2018

Formula

"DIK" transform of A000081.
a(n) = A000081(n) + A027852(n) + A000226(n) + A000368(n) + ... [Geoffrey Critzer, Mar 24 2013]

A000631 Number of ethylene derivatives with n carbon atoms.

Original entry on oeis.org

1, 1, 3, 5, 13, 27, 66, 153, 377, 914, 2281, 5690, 14397, 36564, 93650, 240916, 623338, 1619346, 4224993, 11062046, 29062341, 76581151, 202365823, 536113477, 1423665699, 3788843391, 10103901486, 26995498151, 72253682560, 193706542776
Offset: 2

Views

Author

Keywords

Comments

Number of structural isomers of alkenes C_n H_{2n} with n carbon atoms.
Number of unicyclic graphs of n nodes where a double-edge replaces the cycle, [A217781], end-points of the double-edge of out-degrees <= 2, other nodes having out-degrees <= 3.
Number of rooted trees on n+1 nodes where the root has degree 2, the 2 children of the root have out-degrees <= 2, and the other nodes have out-degrees <= 3.
See illustration of initial terms. - Washington Bomfim, Nov 30 2020

References

  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000642, A000598, A027852 (out-degrees of nodes not limited).

Programs

  • PARI
    \\ Here G(n) is A000598 as g.f., h is A000642.
    seq(n)={my(g=G(n), h=(subst(g, x, x^2) + g^2)/2); Vec(subst(h, x, x^2) + h^2)/2} \\ Andrew Howroyd, Dec 01 2020

Formula

a(n) = b(1)b(n-1) + b(2)b(n-2) + b(3)b(n-3) + ... + b(n/2)(b(n/2) + 1)/2 when n is even or b(1)b(n-1) + b(2)b(n-2) + b(3)b(n-3) + ... + b((n-1)/2)b((n + 1)/2) when n is odd, where b(n) = A000642(n). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
a(n) = Sum_{k=1..(n-1)/2}( f(k) * f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2 + f(n/2) ) / 2 where f(n) = A000642(n+1). - Washington Bomfim, Nov 29 2020
G.f.: (g(x^2) + g(x)^2)/2 where x*g(x) is the g.f. of A000642. - Andrew Howroyd, Dec 01 2020

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008

A058879 Triangle read by rows: T(n,k) = number of connected graphs with one cycle of length m = n - k + 1 and n nodes (n >= 3 and 1 <= k <= n - 2).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 4, 9, 18, 1, 1, 5, 10, 28, 44, 1, 1, 5, 13, 32, 71, 117, 1, 1, 6, 14, 45, 89, 202, 299, 1, 1, 6, 17, 52, 130, 264, 542, 793, 1, 1, 7, 19, 69, 163, 413, 751, 1507, 2095, 1, 1, 7, 22, 79, 224, 544, 1221, 2179, 4114, 5607
Offset: 3

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

Diagonals give A000226, A000368. Row sums give A001429.
From Washington Bomfim, Jul 06 2008: (Start)
T(n,3) = 2 + floor(m/2). When k = 3, n = m + 2, so we have unicyclic graphs of order m+2 with a cycle of length m. Only two nodes of those graphs belong to the rooted trees attached to the cycle, so the orders of those trees can be only 1, 2, or 3.
We can have only one tree of order 3 in those graphs. So the two different rooted trees of order 3 correspond to two unicycles.
We can have two trees of order 2 in those graphs. Those trees can be rooted at two points r_1, r_2 of the cycle in h = floor(m/2) ways. They can be neighbors, i.e., we have an edge of the cycle (r_1, r_2). They can be 2, 3, ..., h edges apart, but they cannot be h+1 edges away from each other. This is true because we obtain an isomorphic graph if r_1 and r_2 are h+1 (or more) edges apart, since there are also n - (h+1) edges between r_1 and r_2 and n-h-1 <= h. Note that there is only one rooted tree of order two.
The five unicyclic graphs of order 9 with a cycle of length 7 are depicted in the picture corresponding to the link.
T(n,4) = 4 + 2floor(m/2) + nearest integer to m^2/12.
We have unicyclic graphs of order m+3 with a cycle of length m. Only three nodes of those graphs belong to the rooted trees attached to the cycle, so the orders of those trees can be only 1, 2, 3, or 4. The set of unicycles can be divided in graphs with trees of orders
4,1,1,...,1
3,2,1,...,1
2,2,2,1,...,1.
Since there are 4 rooted trees of order 4, the orders 4,1,1,...,1 correspond to 4 unicycles.
The orders 3,2,1,...,1 correspond to 2floor(m/2) unicycles. For each one of the two rooted trees of order 3, we see above that there are floor(m/2) possibilities to choose a root for the tree of order 2.
The orders 2,2,2,1,...,1 correspond to i unicycles, i = nearest integer to m^2/12. This follows from the number of necklaces with n+3 beads 3 of which are red, that is equal to the nearest integer to (n+3)^2/12. See A001399. In our case we have necklaces with m beads. The 3 red beads are the roots of the trees of order 2. (End)

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  3;
  1,  1,  4,  7;
  1,  1,  4,  9, 18;
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 69, (3.4.1).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150, Table 9.

Crossrefs

Programs

  • Mathematica
    Needs["NumericalDifferentialEquationAnalysis`"];
    t[n_, k_] := Block[{x}, Coefficient[CycleIndexPolynomial[DihedralGroup[n + 1 - k], Table[ButcherTreeCount[n].x^(p Range[n]), {p, n + 1 - k}]], x, n]];
    Table[t[n, k], {n, 13}, {k, 1, n - 2}] // Flatten
    (* requires Mathematica 9+; Andrey Zabolotskiy, May 12 2017 *)

Formula

T(n, k) = [x^n] Z(D_{n+1-k}; t(x)) where t(x) is the g.f. of A000081 and Z(D_m) is the cycle index of the dihedral group of order m. - Sean A. Irvine, Sep 03 2022

Extensions

More terms from Washington Bomfim, May 12 2008
More terms from Washington Bomfim, Jul 06 2008
Rows n = 11 to 13 added, name and offset corrected by Andrey Zabolotskiy, May 12 2017

A339984 G.f.: g(x) * g(x^2), where g(x) is the g.f. of A000081.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 5, 13, 26, 65, 147, 369, 899, 2298, 5851, 15261, 39945, 105948, 282504, 759480, 2052027, 5576017, 15216998, 41705762, 114715503, 316611401, 876466003, 2433091773, 6771462322, 18889829555, 52809592990, 147935027381, 415182991401, 1167251435240
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81 * g81x2, {x, 0, max}], x]

Formula

a(n) ~ A339986 * A051491^n / n^(3/2).

A339985 G.f.: g(x)^2 * g(x^2), where g(x) is the g.f. of A000081.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 14, 37, 90, 232, 584, 1512, 3906, 10246, 26984, 71766, 191852, 516400, 1396760, 3797435, 10367628, 28420466, 78183462, 215791426, 597368222, 1658233794, 4614679792, 12872125836, 35982713314, 100787606966, 282832173830, 795070060983
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81^2 * g81x2, {x, 0, max}], x]

Formula

a(n) ~ 2 * A339986 * A051491^n / n^(3/2).
Showing 1-10 of 10 results.