A027852
Number of connected functions on n points with a loop of length 2.
Original entry on oeis.org
0, 1, 1, 3, 6, 16, 37, 96, 239, 622, 1607, 4235, 11185, 29862, 80070, 216176, 586218, 1597578, 4370721, 12003882, 33077327, 91433267, 253454781, 704429853, 1962537755, 5479855546, 15332668869, 42983656210, 120716987723, 339596063606, 956840683968
Offset: 1
Column 2 of
A033185 (forests of rooted trees),
A217781 (unicyclic graphs),
A339303 (unoriented linear forests) and
A339428 (connected functions).
-
with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> (add(b(i) *b(n-i), i=0..n) +`if`(irem(n, 2)=0, b(n/2), 0))/2: seq(a(n), n=1..50); # Alois P. Heinz, Aug 22 2008, revised Oct 07 2011
# second, re-usable version
A027852 := proc(N::integer)
local dh, Nprime;
dh := 0 ;
for Nprime from 0 to N do
dh := dh+A000081(Nprime)*A000081(N-Nprime) ;
end do:
if type(N,'even') then
dh := dh+A000081(N/2) ;
end if;
dh/2 ;
end proc: # R. J. Mathar, Mar 06 2017
-
Needs["Combinatorica`"];nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[2], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {2, nn}] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d b[d], {d, Divisors[j]}] b[n-j], {j, 1, n-1}])/(n-1)];
a[n_] := (Sum[b[i] b[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, b[n/2], 0])/2;
Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 30 2018, after Alois P. Heinz *)
-
seq(max_n)= { my(V = f = vector(max_n), i=1,s); f[1]=1;
for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
for(n = 1, max_n, s = sum(k = 1, (n-1)/2, ( f[k] * f[n-k] ));
if(n % 2 == 1, V[i] = s, V[i] = s + (f[n/2]^2 + f[n/2])/2); i++); V };
\\ Washington Bomfim, Jul 06 2012 and Dec 01 2020
A339428
Triangle read by rows: T(n,k) is the number of connected functions on n points with a loop of length k.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 3, 1, 1, 20, 16, 9, 4, 1, 1, 48, 37, 23, 11, 4, 1, 1, 115, 96, 62, 35, 14, 5, 1, 1, 286, 239, 169, 97, 46, 18, 5, 1, 1, 719, 622, 451, 282, 145, 63, 21, 6, 1, 1, 1842, 1607, 1217, 792, 440, 206, 80, 25, 6, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 6, 3, 1, 1;
20, 16, 9, 4, 1, 1;
48, 37, 23, 11, 4, 1, 1;
115, 96, 62, 35, 14, 5, 1, 1;
286, 239, 169, 97, 46, 18, 5, 1, 1;
719, 622, 451, 282, 145, 63, 21, 6, 1, 1;
...
Columns 1..12 are
A000081,
A027852,
A029852,
A029853,
A029868,
A029869,
A029870,
A029871,
A032205,
A032206,
A032207,
A032208.
-
\\ TreeGf is A000081 as g.f.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(sumdiv(k, d, eulerphi(d)*subst(r + O(x*x^(n\d)), x, x^d)^(k/d))/k, -n)}
M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
{ my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }
A339067
Triangle read by rows: T(n,k) is the number of linear forests with n nodes and k rooted trees.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 20, 30, 25, 14, 5, 1, 48, 74, 69, 44, 20, 6, 1, 115, 188, 186, 133, 70, 27, 7, 1, 286, 478, 503, 388, 230, 104, 35, 8, 1, 719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1, 1842, 3214, 3651, 3168, 2200, 1236, 560, 200, 54, 10, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 2, 1;
4, 5, 3, 1;
9, 12, 9, 4, 1;
20, 30, 25, 14, 5, 1;
48, 74, 69, 44, 20, 6, 1;
115, 188, 186, 133, 70, 27, 7, 1;
286, 478, 503, 388, 230, 104, 35, 8, 1;
719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1;
...
-
b:= proc(n) option remember; `if`(n<2, n, (add(add(d*b(d),
d=numtheory[divisors](j))*b(n-j), j=1..n-1))/(n-1))
end:
T:= proc(n, k) option remember; `if`(k=1, b(n), (t->
add(T(j, t)*T(n-j, k-t), j=1..n-1))(iquo(k, 2)))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Dec 04 2020
# Using function PMatrix from A357368. Adds row and column for n, k = 0.
PMatrix(10, A000081); # Peter Luschny, Oct 07 2022
-
b[n_] := b[n] = If[n < 2, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)];
T[n_, k_] := T[n, k] = If[k == 1, b[n], With[{t = Quotient[k, 2]}, Sum[T[j, t]*T[n - j, k - t], {j, 1, n - 1}]]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
-
\\ TreeGf is A000081.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
ColSeq(n,k)={my(t=TreeGf(max(0,n+1-k))); Vec(t^k, -n)}
M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
{ my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }
A000226
Number of n-node unlabeled connected graphs with one cycle of length 3.
Original entry on oeis.org
1, 1, 3, 7, 18, 44, 117, 299, 793, 2095, 5607, 15047, 40708, 110499, 301541, 825784, 2270211, 6260800, 17319689, 48042494, 133606943, 372430476, 1040426154, 2912415527, 8167992598, 22947778342, 64577555147, 182009003773, 513729375064, 1452007713130
Offset: 3
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 3..1000 (first 198 terms from Vincenzo Librandi)
- Sergei Abramovich, Partitions of integers, Ferrers-Young diagrams, and representational efficacy of spreadsheet modeling, Spreadsheets in Education (eJSiE): Vol. 5: Iss. 2, Article 1, p. 5
- Washington Bomfim, Illustration of initial terms
- F. Ruskey, Combinatorial Generation, Eq.(4.27), 2003
- Eric Weisstein's World of Mathematics, Rooted Tree
- Index entries for sequences related to rooted trees
-
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; unapply(add(b(k)*x^k, k=1..n),x) end: a:= n-> coeff(series((B(n-2)(x)^3+ 3*B(n-2)(x)* B(n-2)(x^2)+ 2*B(n-2)(x^3))/6, x=0, n+1), x,n): seq(a(n), n=3..40); # Alois P. Heinz, Aug 21 2008
-
terms = 30; r[] = 0; Do[r[x] = x *Exp[Sum[r[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms+3}]; A[x_] = (r[x]^3 + 3*r[x]*r[x^2] + 2*r[x^3])/6 + O[x]^(terms+3); Drop[CoefficientList[A[x], x], 3] (* Jean-François Alcover, Nov 23 2011, updated Jan 11 2018 *)
-
seq(max_n) = {my(a = f = vector(max_n), s, D); f[1]=1;
for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
for(n=3,max_n,s=0;forpart(P=n,D=Set(P);if(#D==3,s+=f[P[1]]*f[P[2]]*f[P[3]];next());
if(#D==1, s+= binomial(f[P[1]]+2, 3); next());
if(P[1] == P[2], s += binomial(f[P[1]]+1, 2) * f[P[3]],
s += binomial(f[P[2]]+1, 2) * f[P[1]]),[1,n],[3,3]); a[n] = s ); a[3..max_n] }; \\ Washington Bomfim, Dec 22 2020
A000368
Number of connected graphs with one cycle of length 4.
Original entry on oeis.org
1, 1, 4, 9, 28, 71, 202, 542, 1507, 4114, 11381, 31349, 86845, 240567, 668553, 1860361, 5188767, 14495502, 40572216, 113743293, 319405695, 898288484, 2530058013, 7135848125, 20152898513, 56986883801
Offset: 4
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 69.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Needs["Combinatorica`"]; nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[4], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {5, nn}] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; max = 30; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2 k), {k, 1, max}]; g81x4 = Sum[A000081[[k]]*x^(4 k), {k, 1, max}]; Drop[CoefficientList[ Series[(2*g81x4 + 3*g81x2^2 + 2*g81^2*g81x2 + g81^4)/8, {x, 0, max}], x], 4] (* Vaclav Kotesovec, Dec 25 2020 *)
-
g(Q)={my(V=Vec(Q),D=Set(V),d=#D); if(d==4,return(3*f[D[1]]*f[D[2]]*f[D[3]]*f[D[4]]));
if(d==1, return((f[D[1]]^4+2*f[D[1]]^3+3*f[D[1]]^2+2*f[D[1]])/8));
my(k=1, m = #select(x->x == D[k],V), t); while(m==1, k++; m = #select(x->x == D[k], V)); t = D[1]; D[1] = D[k]; D[k] = t;
if(d == 3, return( f[D[1]] * f[D[2]] * f[D[3]] * (3 * f[D[1]] + 1)/2 ) );
if(m==3, return(f[D[1]]^2 * f[D[2]] * (f[D[1]] + 1)/2));
((3*f[D[2]]^2 + f[D[2]])*f[D[1]]^2 + (f[D[2]]^2 + 3*f[D[2]])*f[D[1]])/4 };
seq(max_n) = { my(s, a = vector(max_n), U); f = vector(max_n); f[1] = 1;
for(j=1, max_n - 1, if(j%100==0,print(j)); f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
for(n=4, max_n, s=0; forpart(Q = n, if( (Q[4] > Q[3]) && (Q[3]-1 > Q[2]),
U = U / (f[Q[4] + 1] * f[Q[3] - 1]) * f[Q[4]] * f[Q[3]], U = g(Q)); s += U,
[1,n],[4,4]); a[n] = s; if(n % 100 == 0, print(n": " s))); a[4..max_n] };
\\ Washington Bomfim, Jul 19 2012 and Dec 22 2020
A068051
Number of n-node connected graphs with one cycle, possibly of length 1 or 2.
Original entry on oeis.org
1, 2, 4, 9, 20, 49, 118, 300, 765, 1998, 5255, 14027, 37670, 102095, 278262, 763022, 2101905, 5816142, 16153148, 45017423, 125836711, 352723949, 991143727, 2791422887, 7877935985, 22275473767, 63096075118, 179012076933
Offset: 1
-
nn=20;t[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0==Series[t[x]-x Product[1/(1-x^i)^a[i],{i,1,nn}],{x,0,nn}],x];b=Table[a[n],{n,1,nn}]/.sol//Flatten;Map[Total,Drop[Transpose[Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[b[[i]]x^(i*k),{i,1,nn}],{k,1,nn}][[j]],{j,1,n}],x],nn],{n,1,nn}]],1]] (* Geoffrey Critzer, Mar 24 2013 *)
-
\\ TreeGf gives gf of A000081
TreeGf(N)={my(A=vector(N, j, 1)); for(n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec((sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2)/2)} \\ Andrew Howroyd, Jun 20 2018
A000631
Number of ethylene derivatives with n carbon atoms.
Original entry on oeis.org
1, 1, 3, 5, 13, 27, 66, 153, 377, 914, 2281, 5690, 14397, 36564, 93650, 240916, 623338, 1619346, 4224993, 11062046, 29062341, 76581151, 202365823, 536113477, 1423665699, 3788843391, 10103901486, 26995498151, 72253682560, 193706542776
Offset: 2
- J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 2..500
- Washington Bomfim, Illustration of initial terms
- J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
- H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-686.
- H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-685. (Annotated scanned copy)
- H. R. Henze and C. M. Blair, The number of structural isomers of the more important types of aliphatic compounds, J. Amer. Chem. Soc., 56 (1) (1934), 157-157.
- C.-W. Lam, A Mathematical Relationship between the Number of Isomers of Alkenes and Alkynes: A Result Established from the Enumeration of Isomers of Alkenes from Alky Biradicals, J. Math. Chem., 23, 421 (1998).
- R. J. Mathar, Illustration for graphs up to 6 carbons
- R. C. Read, Some recent results in chemical enumeration, Lect. Notes Math. 303 (1972), 243-259.
- R. C. Read, Some recent results in chemical enumeration, Preprint, circa 1972. (Annotated scanned copy)
- R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 28.
- N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
- Index entries for sequences related to rooted trees
-
\\ Here G(n) is A000598 as g.f., h is A000642.
seq(n)={my(g=G(n), h=(subst(g, x, x^2) + g^2)/2); Vec(subst(h, x, x^2) + h^2)/2} \\ Andrew Howroyd, Dec 01 2020
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
A058879
Triangle read by rows: T(n,k) = number of connected graphs with one cycle of length m = n - k + 1 and n nodes (n >= 3 and 1 <= k <= n - 2).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 4, 9, 18, 1, 1, 5, 10, 28, 44, 1, 1, 5, 13, 32, 71, 117, 1, 1, 6, 14, 45, 89, 202, 299, 1, 1, 6, 17, 52, 130, 264, 542, 793, 1, 1, 7, 19, 69, 163, 413, 751, 1507, 2095, 1, 1, 7, 22, 79, 224, 544, 1221, 2179, 4114, 5607
Offset: 3
Triangle begins:
1;
1, 1;
1, 1, 3;
1, 1, 4, 7;
1, 1, 4, 9, 18;
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 69, (3.4.1).
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150, Table 9.
-
Needs["NumericalDifferentialEquationAnalysis`"];
t[n_, k_] := Block[{x}, Coefficient[CycleIndexPolynomial[DihedralGroup[n + 1 - k], Table[ButcherTreeCount[n].x^(p Range[n]), {p, n + 1 - k}]], x, n]];
Table[t[n, k], {n, 13}, {k, 1, n - 2}] // Flatten
(* requires Mathematica 9+; Andrey Zabolotskiy, May 12 2017 *)
A339984
G.f.: g(x) * g(x^2), where g(x) is the g.f. of A000081.
Original entry on oeis.org
0, 0, 0, 1, 1, 3, 5, 13, 26, 65, 147, 369, 899, 2298, 5851, 15261, 39945, 105948, 282504, 759480, 2052027, 5576017, 15216998, 41705762, 114715503, 316611401, 876466003, 2433091773, 6771462322, 18889829555, 52809592990, 147935027381, 415182991401, 1167251435240
Offset: 0
-
max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81 * g81x2, {x, 0, max}], x]
A339985
G.f.: g(x)^2 * g(x^2), where g(x) is the g.f. of A000081.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 6, 14, 37, 90, 232, 584, 1512, 3906, 10246, 26984, 71766, 191852, 516400, 1396760, 3797435, 10367628, 28420466, 78183462, 215791426, 597368222, 1658233794, 4614679792, 12872125836, 35982713314, 100787606966, 282832173830, 795070060983
Offset: 0
-
max = 30; A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2*k), {k, 1, max}]; CoefficientList[Series[g81^2 * g81x2, {x, 0, max}], x]
Showing 1-10 of 10 results.
Comments