cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A223888 Composite odious numbers (A000069) having no proper odious divisors greater than 1.

Original entry on oeis.org

25, 69, 81, 87, 115, 145, 213, 265, 289, 339, 355, 391, 415, 445, 477, 493, 505, 529, 565, 695, 731, 747, 789, 815, 841, 901, 985, 1041, 1047, 1077, 1119, 1149, 1207, 1219, 1315, 1341, 1347, 1383, 1401, 1411, 1437, 1465, 1509, 1513, 1527, 1537, 1555, 1585
Offset: 1

Views

Author

Vladimir Shevelev, Mar 28 2013

Keywords

Comments

The sequence is obtained using Eratosthenes-like sieve for odious numbers.

Crossrefs

Programs

  • Mathematica
    odiousQ[n_] := OddQ@Total@IntegerDigits[n, 2]; okQ[n_] := n > 1 && odiousQ[n] && ! PrimeQ[n] && Catch[Do[If[odiousQ[d], Throw[False]], {d, Most@Rest@Divisors@n}]; True]; Select[Range@3000, okQ] (* Giovanni Resta, Mar 28 2013 *)
  • PARI
    isodi(n) = hammingweight(n) % 2;
    noodid(n) = {fordiv(n, d, if ((d != 1) && (d < n) && isodi(d), return (0));); 1;}
    lista(nn) = {forcomposite(n=1, nn, if (isodi(n) && noodid(n), print1(n, ", ")););} \\ Michel Marcus, Feb 08 2016

Extensions

a(10)-a(48) from Giovanni Resta, Mar 28 2013

A384427 Evil numbers that are not a multiple of any other evil number.

Original entry on oeis.org

3, 5, 17, 23, 29, 43, 53, 71, 77, 83, 89, 101, 113, 139, 149, 163, 169, 197, 209, 257, 263, 269, 277, 281, 287, 293, 311, 317, 329, 337, 343, 347, 349, 353, 359, 373, 383, 389, 401, 407, 413, 427, 449, 461, 467, 469, 479, 503, 509, 523, 533, 547, 553, 571, 593, 599
Offset: 1

Views

Author

Francisco J. Muñoz, May 28 2025

Keywords

Crossrefs

Union of A217790 and A027699.

Programs

  • Maple
    isevil:= proc(n) convert(convert(n,base,2),`+`)::even end proc:
    N:= 1000: # for terms <= N
    V:= Vector(N,1):
    for i from 1 to N do
        if isevil(i) then V[[seq(j,j=2*i .. N, i)]]:= 0
        else V[i]:= 0
        fi
    od:
    select(t -> V[t]=1, [$1..N]); # Robert Israel, Jun 18 2025
  • Mathematica
    evilQ[n_] := EvenQ[DigitCount[n, 2, 1]]; q[n_] := evilQ[n] && AllTrue[Divisors[n], # == n || ! evilQ[#] &]; Select[Range[600], q] (* Amiram Eldar, May 31 2025 *)
  • PARI
    isevil(n) = hammingweight(n) % 2 == 0;
    noevildiv(n) = {fordiv(n, d, if ((d < n) && isevil(d), return (0)); ); 1; }
    isok(n) = isevil(n) && noevildiv(n); \\ Michel Marcus, May 31 2025
Showing 1-2 of 2 results.