A217798 Numbers n such that n^2 + 1 and (n+1)^2 + 1 are divisible by a square.
117, 407, 606, 775, 943, 1193, 1252, 1482, 1743, 1957, 2267, 2563, 3217, 3281, 3309, 3457, 3506, 3618, 3718, 3817, 4007, 4632, 4831, 5168, 5742, 5743, 5845, 6031, 6182, 6492, 6768, 7506, 7843, 8042, 8118, 8331, 8368, 8418, 8707, 8782, 8857, 9056, 9292, 9393
Offset: 1
Keywords
Examples
117 is in the sequence because 117^2+1 = 2*5*37^2 and 118^2+1 = 5^2*557.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
A002522:=func
; [n: n in [1..10^4]| not IsSquarefree(A002522(n)) and not IsSquarefree(A002522(n+1))]; // Bruno Berselli, Oct 15 2012 -
Maple
with(numtheory):for n from 1 to 10000 do :x:=n^2+1:y:=(n+1)^2+1:if issqrfree(x)=false and issqrfree(y)=false then printf(`%d, `,n):else fi:od:
-
Mathematica
Select[ Range[2, 10000], Max[ Transpose[ FactorInteger[ #^2+1 ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ (#+1)^2 + 1]] [[2]]] > 1 &]
Comments