cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A218048 Numbers n such that n^2 + 1, (n+1)^2 + 1 and (n+2)^2 + 1 are divisible by a square.

Original entry on oeis.org

5742, 10716, 11731, 22868, 23156, 25757, 29505, 37080, 62967, 65641, 71218, 71922, 73443, 82542, 84906, 87892, 100456, 100792, 104868, 121918, 128567, 136282, 140992, 142168, 160142, 169605, 184131, 191067, 194280, 226191, 230107, 255118, 256118, 261005
Offset: 1

Views

Author

Michel Lagneau, Oct 19 2012

Keywords

Examples

			5742 is in the sequence because 5742^2+1, 5743^2+1 and 5744^2+1 are divisible by squares.
5742^2+1 = 5 * 17^2 * 22817;
5743^2+1 = 2 * 5^2 * 701 * 941;
5744^2+1 = 109^2 * 2777.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 300000 do :x:=n^2+1:y:=(n+1)^2+1:z:= (n+2)^2+1:if issqrfree(x)=false and issqrfree(y)=false and issqrfree(z)=false then printf(`%d, `,n):else fi:od:
  • Mathematica
    f[n_] := Union[ Transpose[ FactorInteger[n^2+1]] [[2]]] [[ -1]]; lst={};a = 0; b = 1; Do[c = f[n]; If[a> 1 && b > 1 && c > 1, AppendTo[lst,n-2]]; a = b; b = c, {n, 3, 5*10^5}]; lst
    Select[Range[261005], ! SquareFreeQ[#^2 + 1] && ! SquareFreeQ[(# + 1)^2 + 1] && ! SquareFreeQ[(# + 2)^2 + 1] &] (* T. D. Noe, Oct 22 2012 *)
    SequencePosition[Table[If[SquareFreeQ[n^2+1],0,1],{n,27*10^4}],{1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 05 2019 *)

A218049 Smallest k such that the n numbers k^2 + 1, (k+1)^2 + 1, ..., (k+n-1)^2 + 1 are divisible by a square.

Original entry on oeis.org

7, 117, 5742, 455356, 35952791
Offset: 1

Views

Author

Michel Lagneau, Oct 19 2012

Keywords

Examples

			a(3) = 5742 as 5742^2+1, 5743^2+1 and 5744^2+1 are divisible by squares.
5742^2+1 = 5 * 17 ^ 2 * 22817;
5743^2+1 = 2 * 5 ^ 2 * 701 x 941;
5744^2+1 = 109 ^ 2 * 2777.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; k = 0; Table[While[cnt < n, k++; If[! SquareFreeQ[k^2+1], cnt++, cnt = 0]]; k - n + 1, {n, 4}]

Extensions

a(5) from Giovanni Resta, Oct 21 2012
Showing 1-2 of 2 results.