A217859 Triangular array read by rows. T(n,k) is the number of functions on n unlabeled nodes that have exactly k unique components (n >= 1, k >= 1).
1, 3, 5, 2, 12, 7, 21, 25, 1, 58, 63, 9, 126, 178, 39, 341, 466, 140, 4, 867, 1253, 470, 25, 2334, 3418, 1431, 135, 6218, 9365, 4358, 544, 6, 17016, 25924, 12871, 2042, 50, 46351, 72207, 37993, 7056, 291, 127842, 202345, 111142, 23483, 1383, 4, 353297, 568822, 325359, 75701, 5754, 60
Offset: 1
Examples
Triangle begins: 1; 3, 5, 2; 12, 7; 21, 25, 1; 58, 63, 9; 126, 178, 39; 341, 466, 140, 4; 867, 1253, 470, 25; 2334, 3418, 1431, 135; 6218, 9365, 4358, 544, 6; 17016, 25924, 12871, 2042, 50; 46351, 72207, 37993, 7056, 291; 127842, 202345, 111142, 23483, 1383, 4; 353297, 568822, 325359, 75701, 5754, 60; T(3,2)=2 because (in the link) the third and the fifth digraphs on 3 nodes are composed of 2 unique components.
Links
- N. J. A. Sloane, Illustration of initial terms
Programs
-
Mathematica
Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[((y x^i +1-x^i)/(1-x^i))^c[[i]],{i,1,nn-1}],{x,0,15}],{x,y}]//Grid (* after code given by Robert A. Russell in A000081 *)
Formula
O.g.f.: Product_{n>=1} ((y*x^n - x^n + 1)/(1 - x^n))^A002861(n).
Comments