cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217859 Triangular array read by rows. T(n,k) is the number of functions on n unlabeled nodes that have exactly k unique components (n >= 1, k >= 1).

Original entry on oeis.org

1, 3, 5, 2, 12, 7, 21, 25, 1, 58, 63, 9, 126, 178, 39, 341, 466, 140, 4, 867, 1253, 470, 25, 2334, 3418, 1431, 135, 6218, 9365, 4358, 544, 6, 17016, 25924, 12871, 2042, 50, 46351, 72207, 37993, 7056, 291, 127842, 202345, 111142, 23483, 1383, 4, 353297, 568822, 325359, 75701, 5754, 60
Offset: 1

Views

Author

Geoffrey Critzer, Oct 13 2012

Keywords

Comments

Row sums are A001372.
T(n,1) = A002861(n) + 1 when n is prime (counts connected functions and the identity function).

Examples

			Triangle begins:
       1;
       3,
       5,      2;
      12,      7;
      21,     25,      1;
      58,     63,      9;
     126,    178,     39;
     341,    466,    140,     4;
     867,   1253,    470,    25;
    2334,   3418,   1431,   135;
    6218,   9365,   4358,   544,    6;
   17016,  25924,  12871,  2042,   50;
   46351,  72207,  37993,  7056,  291;
  127842, 202345, 111142, 23483, 1383,  4;
  353297, 568822, 325359, 75701, 5754, 60;
T(3,2)=2 because (in the link) the third and the fifth digraphs on 3 nodes are composed of 2 unique components.
		

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[((y x^i +1-x^i)/(1-x^i))^c[[i]],{i,1,nn-1}],{x,0,15}],{x,y}]//Grid
    (* after code given by Robert A. Russell in A000081 *)

Formula

O.g.f.: Product_{n>=1} ((y*x^n - x^n + 1)/(1 - x^n))^A002861(n).