cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217870 Decimal expansion of sqrt(sqrt(2 + sqrt(3))).

Original entry on oeis.org

1, 3, 8, 9, 9, 1, 0, 6, 6, 3, 5, 2, 4, 1, 4, 7, 7, 1, 7, 9, 1, 1, 5, 4, 8, 8, 1, 1, 9, 9, 2, 2, 1, 0, 1, 0, 2, 1, 9, 6, 0, 8, 9, 9, 0, 3, 5, 3, 9, 2, 0, 5, 0, 5, 2, 6, 5, 1, 8, 2, 2, 0, 1, 4, 3, 3, 1, 7, 5, 9, 4, 4, 0, 8, 8, 4, 6, 7, 7, 4, 4, 8, 6, 8, 3, 8, 6, 1, 3, 8, 6, 0, 8, 2, 2, 2, 9, 1, 7, 3, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 13 2012

Keywords

Comments

It can be used for a Lucas-Lehmer test of prime numbers.
The value is equal to e^(log(2 + sqrt(3))/4) = e^A182023.

Examples

			1.389910663524147717911548811992210102196089903539205052651822014331759...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(Sqrt(2 + Sqrt(3))); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf(sqrt(sqrt(2+sqrt(3))),120); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    RealDigits[N[Sqrt@Sqrt[2 + Sqrt[3]], 200]][[1]]
  • Maxima
    fpprec : 100$ bfloat(sqrt(sqrt(2 + sqrt(3)))); /* Martin Ettl, Oct 15 2012 */
    
  • PARI
    default(realprecision, 200); x=sqrt(sqrt(2+sqrt(3))); for(n=1, 200, d=floor(x); x=(x-d)*10; print1(d, ", "));
    

Formula

Equals (2+sqrt(3))^(1/4). - Vaclav Kotesovec, Oct 18 2014