cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A218121 Numerator of c(n) defined by c(1)=1, c(2)=5/2 and for n>=3, c(n) is the minimal rational number >= c(n-1) such that there are no primes in the interval (prime(n)/c(n), prime(n+1)/c(n)).

Original entry on oeis.org

1, 5, 5, 11, 11, 17, 17, 17, 29, 29, 29, 41, 41, 41, 41, 41, 41, 67, 67, 67, 67, 83, 83, 83, 83, 83, 83, 109, 109, 127, 127, 127, 127, 149, 149, 149, 149, 149, 149, 149, 181, 181, 181, 181, 181, 181, 181, 181, 229, 229, 229, 229, 251, 251, 251, 251, 251, 251, 251, 251
Offset: 1

Views

Author

Vladimir Shevelev, Oct 21 2012

Keywords

Comments

The sequence c(n) begins 1, 5/2, 5/2, 11/2, 11/2, 17/3, ...
Its terms > 1 are ratios of primes.

Examples

			Intervals (2/1,3/1),(3/(5/2),5/(5/2)) are free from primes. By the condition, c(3) >= c(2) = 5/2. Since also (5/(5/2),7/(5/2)) contains no prime, then c(3)=5/2. Further, c(4) should be chosen minimal>=5/2 such that the interval (7/c(4),11/c(4)) does not contain 2 and 3 (it is clear that it contains no prime>=5). It is easy to see that the minimal c(4)=11/2, etc.
		

Crossrefs

Cf. A218123 (denominator), A217871, A217689, A217691, A217833, A217884.

Programs

  • Maple
    ispfree := proc(a,b)
        local alow ;
        alow := floor(a);
        if nextprime(alow) < b then
            false;
        else
            true;
        end if;
    end proc:
    A218121c := proc(n)
        option remember;
        local k ;
        if n = 1 then
            return 1;
        elif n = 2 then
            return 5/2 ;
        else
            if ispfree(ithprime(n)/procname(n-1),ithprime(n+1)/procname(n-1)) then
                return procname(n-1) ;
            end if ;
            for k from n by -1 do
                if ispfree( ithprime(n)*ithprime(k)/ithprime(n+1),ithprime(k) )
                    and ithprime(n+1)/ithprime(k) > procname(n-1) then
                    return ithprime(n+1)/ithprime(k) ;
                end if;
            end do:
        end if;
    end proc:
    A218121 := proc(n)
        numer(A218121c(n)) ;
    end proc: # R. J. Mathar, Dec 02 2012
  • Mathematica
    ispfree[a_, b_] := NextPrime[Floor[a]] >= b;
    c[n_] := c[n] = Module[{k}, Which[n == 1, Return[1], n == 2, Return[5/2], True, If[ispfree[Prime[n]/c[n-1], Prime[n+1]/c[n-1]], Return[c[n-1]]]; For[k = n, True, k--, If[ispfree[Prime[n]*Prime[k]/Prime[n+1], Prime[k]] && Prime[n+1]/Prime[k] > c[n-1], Return[Prime[n+1]/Prime[k]]]]]];
    a[n_] := Numerator[c[n]];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 01 2023, after R. J. Mathar *)

Formula

For n>=3, if interval (prime(n)/c(n-1), prime(n+1)/c(n-1)) is free from primes, then c(n)=c(n-1); otherwise, c(n)=prime(n+1)/prime(k), where k<=n is the maximal, such that a) prime(n+1)/prime(k)>c(n-1) and b) the open interval (prime(n)*prime(k)/prime(n+1), prime(k)) does not contain any prime.
Note that such k exists, since, for k=1, the interval (2*prime(n)/prime(n+1),2) is free from primes.

A218123 Denominators of terms of the sequence {c(n)} defined in A218121.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41, 41, 41, 43, 43, 43, 43, 43, 43, 43, 47, 47
Offset: 1

Views

Author

Vladimir Shevelev, Oct 21 2012

Keywords

Comments

It is easy to see that every prime is in the sequence.

Crossrefs

Programs

  • Maple
    ispfree := proc(a,b)
        local alow ;
        alow := floor(a);
        if nextprime(alow) < b then
            false;
        else
            true;
        end if;
    end proc:
    A218121c := proc(n)
        option remember;
        local k ;
        if n = 1 then
            return 1;
        elif n = 2 then
            return 5/2 ;
        else
            if ispfree(ithprime(n)/procname(n-1),ithprime(n+1)/procname(n-1)) then
                return procname(n-1) ;
            end if ;
            for k from n by -1 do
                if ispfree( ithprime(n)*ithprime(k)/ithprime(n+1),ithprime(k) )
                    and ithprime(n+1)/ithprime(k) > procname(n-1) then
                    return ithprime(n+1)/ithprime(k) ;
                end if;
            end do:
        end if;
    end proc:
    A218123 := proc(n)
        denom(A218121c(n)) ;
    end proc: # R. J. Mathar, Dec 02 2012
Showing 1-2 of 2 results.