cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217897 Triangular array read by rows. T(n,k) is the number of unlabeled functions on n nodes that have exactly k fixed points, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 6, 7, 4, 1, 1, 13, 19, 9, 4, 1, 1, 40, 47, 27, 10, 4, 1, 1, 100, 130, 68, 29, 10, 4, 1, 1, 291, 343, 195, 76, 30, 10, 4, 1, 1, 797, 951, 523, 220, 78, 30, 10, 4, 1, 1, 2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1, 6389, 7318, 4096, 1708, 625, 230, 79, 30, 10, 4, 1, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 14 2012

Keywords

Comments

Row sums are A001372;
Column for k=0 is A001373;
Column for k=1 is A001372. (offset)

Examples

			Triangle begins:
     1;
     0,    1;
     1,    1,    1;
     2,    3,    1,   1;
     6,    7,    4,   1,   1;
    13,   19,    9,   4,   1,  1;
    40,   47,   27,  10,   4,  1,  1;
   100,  130,   68,  29,  10,  4,  1,  1;
   291,  343,  195,  76,  30, 10,  4,  1, 1;
   797,  951,  523, 220,  78, 30, 10,  4, 1, 1;
  2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1;
		

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];cfd=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,2,30}]],1]; CoefficientList[Series[Product[1/(1-x^i)^cfd[[i]]/(1-y x^i)^rt[[i]],{i,1,nn-1}],{x,0,10}],{x,y}]//Grid (* after code given by Robert A. Russell in A000081 *)

Formula

O.g.f.: Product_{n>=1} 1/((1-x^n)^A002862(n) * (1 - y*x^n)^A000081(n) ).