A217897 Triangular array read by rows. T(n,k) is the number of unlabeled functions on n nodes that have exactly k fixed points, n >= 0, 0 <= k <= n.
1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 6, 7, 4, 1, 1, 13, 19, 9, 4, 1, 1, 40, 47, 27, 10, 4, 1, 1, 100, 130, 68, 29, 10, 4, 1, 1, 291, 343, 195, 76, 30, 10, 4, 1, 1, 797, 951, 523, 220, 78, 30, 10, 4, 1, 1, 2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1, 6389, 7318, 4096, 1708, 625, 230, 79, 30, 10, 4, 1, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 1, 1, 1; 2, 3, 1, 1; 6, 7, 4, 1, 1; 13, 19, 9, 4, 1, 1; 40, 47, 27, 10, 4, 1, 1; 100, 130, 68, 29, 10, 4, 1, 1; 291, 343, 195, 76, 30, 10, 4, 1, 1; 797, 951, 523, 220, 78, 30, 10, 4, 1, 1; 2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1;
Links
- N. J. A. Sloane, Illustration of initial terms of A001372
Programs
-
Mathematica
Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];cfd=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,2,30}]],1]; CoefficientList[Series[Product[1/(1-x^i)^cfd[[i]]/(1-y x^i)^rt[[i]],{i,1,nn-1}],{x,0,10}],{x,y}]//Grid (* after code given by Robert A. Russell in A000081 *)
Comments