cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217975 Integers k such that 2*k^2 - 7 is a square.

Original entry on oeis.org

2, 4, 8, 22, 46, 128, 268, 746, 1562, 4348, 9104, 25342, 53062, 147704, 309268, 860882, 1802546, 5017588, 10506008, 29244646, 61233502, 170450288, 356895004, 993457082, 2080136522, 5790292204, 12123924128, 33748296142, 70663408246, 196699484648
Offset: 1

Views

Author

Sture Sjöstedt, Oct 16 2012

Keywords

Comments

a(n) gives y-values solving the Diophantine equation x^2 + 7 = 2*y^2. A077446(n) gives the x-values. - Sture Sjöstedt, Oct 16 2012
Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 28 = 0. - Colin Barker, Feb 08 2014

Examples

			Since 2(4^2) - 7 = 25 = 5^2, and 4 is the second number with this property, a(2) = 4.
		

Crossrefs

Cf. A077442 (2*n^2 + 7 is a square).

Programs

  • Magma
    I:=[2, 4, 8, 22]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..31]]; // Vincenzo Librandi, Oct 16 2012
    
  • Mathematica
    LinearRecurrence[{0, 6, 0, -1}, {2, 4, 8, 22}, 50] (* Sture Sjöstedt, Oct 16 2012 *)
  • PARI
    Vec(2*x*(1-x)*(x^2+3*x+1)/(x^2-2*x-1)/(x^2+2*x-1)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012

Formula

a(n) = 6*a(n - 2) - a(n - 4) with a(1)=2, a(2)=4, a(3)=8, a(4)=22. - Sture Sjöstedt, Oct 16 2012
a(n)*a(n+3)-a(n+1)*a(n+2) = 10-2*(-1)^n. - Bruno Berselli, Oct 25 2012
a(n) = 2*A006452(n). - R. J. Mathar, Oct 17 2012
G.f.: -2*x*(x - 1)*(x^2 + 3*x + 1)/((x^2 - 2*x - 1)*(x^2 + 2*x - 1)). - Colin Barker, Oct 24 2012
a(n) = a(-n+1) = ((4+sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor(n/2))+(4-sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor(n/2)))/4. - Bruno Berselli, Oct 25 2012
a(2n-1) = A078343(2n-1), a(2n) = A100525(n-1). - Bruno Berselli, Oct 25 2012