cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218045 Number of truth tables of bracketed formulas (case 3).

Original entry on oeis.org

0, 0, 1, 2, 9, 46, 262, 1588, 10053, 65686, 439658, 2999116, 20774154, 145726348, 1033125004, 7390626280, 53281906861, 386732675046, 2823690230850, 20725376703324, 152833785130398, 1131770853856100, 8412813651862868
Offset: 0

Views

Author

N. J. A. Sloane, Oct 23 2012

Keywords

Comments

Equals the self-convolution of A186997 (up to offset). - Paul D. Hanna, Jul 03 2023

Examples

			G.f. A(x) = x^2 + 2*x^3 + 9*x^4 + 46*x^5 + 262*x^6 + 1588*x^7 + 10053*x^8 + 65686*x^9 + 439658*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2+2*Sqrt[1-8*x]-(1+Sqrt[1-8*x])*Sqrt[2+2*Sqrt[1-8*x]+8*x])/8, {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 19 2014 after Yildiz *)
    Flatten[{0,0,Table[Sum[(Sum[Binomial[k,2*k+i+2-n]*Binomial[k+i-1,i],{i,0,n-k-1}]*Binomial[2*n-2,k])/(n-1),{k,0,n-1}],{n,2,20}]}] (* Vaclav Kotesovec, Nov 19 2014 after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((sum(binomial(k,2*k+i-n)*binomial(k+i-1,i),i,0,n-k+1))*binomial(2*n+2,k),k,0,n+1)/(n+1); /* Vladimir Kruchinin, Nov 19 2014  */
    
  • PARI
    x='x+O('x^50); concat([0,0], Vec((2+2*sqrt(1-8*x)-(1+sqrt(1-8*x))*sqrt(2 + 2*sqrt(1-8*x)+8*x))/8)) \\ G. C. Greubel, Apr 01 2017

Formula

Yildiz gives a g.f.: (2+2*sqrt(1-8*x)-(1+sqrt(1-8*x))*sqrt(2+2*sqrt(1-8*x)+8*x))/8.
a(n+1) = (Sum_{k = 0..n} (Sum_{i=0..n-k} (binomial(k, 2*k+i+1-n)*binomial(k+i-1, i)))*binomial(2*n,k))/n. - Vladimir Kruchinin, Nov 19 2014
G.f. G(x) = A(x)/x satisfies G(x) = x*((G(x)*(G(x)+1))/(1-G(x))+1)^2. - Vladimir Kruchinin, Nov 19 2014
a(n) ~ (2*sqrt(3)-3) * 2^(3*n-3) / (3 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 19 2014
From Paul D. Hanna, Jul 03 2023: (Start)
G.f. A(x) = Series_Reversion( x*(1 + sqrt(1 - 4*x - 4*x^2)) / 2 )^2.
G.f. A(x) = exp( Sum_{n>=1} A288470(n) * x^n/n ), where A288470(n) = Sum_{k=0..n} binomial(n,k) * binomial(2*n,2*k). (End)