A218045 Number of truth tables of bracketed formulas (case 3).
0, 0, 1, 2, 9, 46, 262, 1588, 10053, 65686, 439658, 2999116, 20774154, 145726348, 1033125004, 7390626280, 53281906861, 386732675046, 2823690230850, 20725376703324, 152833785130398, 1131770853856100, 8412813651862868
Offset: 0
Keywords
Examples
G.f. A(x) = x^2 + 2*x^3 + 9*x^4 + 46*x^5 + 262*x^6 + 1588*x^7 + 10053*x^8 + 65686*x^9 + 439658*x^10 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Volkan Yildiz, General combinatorical structure of truth tables of bracketed formulas connected by implication, arXiv:1205.5595 [math.CO], 2012.
Programs
-
Mathematica
CoefficientList[Series[(2+2*Sqrt[1-8*x]-(1+Sqrt[1-8*x])*Sqrt[2+2*Sqrt[1-8*x]+8*x])/8, {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 19 2014 after Yildiz *) Flatten[{0,0,Table[Sum[(Sum[Binomial[k,2*k+i+2-n]*Binomial[k+i-1,i],{i,0,n-k-1}]*Binomial[2*n-2,k])/(n-1),{k,0,n-1}],{n,2,20}]}] (* Vaclav Kotesovec, Nov 19 2014 after Vladimir Kruchinin *)
-
Maxima
a(n):=sum((sum(binomial(k,2*k+i-n)*binomial(k+i-1,i),i,0,n-k+1))*binomial(2*n+2,k),k,0,n+1)/(n+1); /* Vladimir Kruchinin, Nov 19 2014 */
-
PARI
x='x+O('x^50); concat([0,0], Vec((2+2*sqrt(1-8*x)-(1+sqrt(1-8*x))*sqrt(2 + 2*sqrt(1-8*x)+8*x))/8)) \\ G. C. Greubel, Apr 01 2017
Formula
Yildiz gives a g.f.: (2+2*sqrt(1-8*x)-(1+sqrt(1-8*x))*sqrt(2+2*sqrt(1-8*x)+8*x))/8.
a(n+1) = (Sum_{k = 0..n} (Sum_{i=0..n-k} (binomial(k, 2*k+i+1-n)*binomial(k+i-1, i)))*binomial(2*n,k))/n. - Vladimir Kruchinin, Nov 19 2014
G.f. G(x) = A(x)/x satisfies G(x) = x*((G(x)*(G(x)+1))/(1-G(x))+1)^2. - Vladimir Kruchinin, Nov 19 2014
a(n) ~ (2*sqrt(3)-3) * 2^(3*n-3) / (3 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 19 2014
From Paul D. Hanna, Jul 03 2023: (Start)
G.f. A(x) = Series_Reversion( x*(1 + sqrt(1 - 4*x - 4*x^2)) / 2 )^2.
Comments