cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218251 G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x^3*A(x)).

Original entry on oeis.org

1, 2, 5, 15, 48, 160, 550, 1937, 6954, 25355, 93633, 349490, 1316397, 4997306, 19100278, 73440718, 283876092, 1102466529, 4299673200, 16832894330, 66127276201, 260595497227, 1029913570587, 4081124171097, 16211144100379, 64539011439944, 257474646313530
Offset: 0

Views

Author

Paul D. Hanna, Oct 24 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 15*x^3 + 48*x^4 + 160*x^5 + 550*x^6 +...
where
A(x) = 1 + (2+x^2)*x*A(x) + (1+2*x^2)*x^2*A(x)^2 + x^5*A(x)^3.
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)^2 * (1 + x^3*AGF) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
  • PARI
    {a(n)=local(A=1); for(i=1, n, A=(1+x*A)^2*(1+x^3*A)+x*O(x^n)); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

Recurrence: (n+2)*(n+3)*(1241*n^5 - 8896*n^4 + 14395*n^3 + 17632*n^2 - 50640*n + 20520)*a(n) = - 6*(n+2)*(1201*n^4 - 9868*n^3 + 26581*n^2 - 24270*n + 2340)*a(n-1) + 2*(12410*n^7 - 64140*n^6 - 41011*n^5 + 524724*n^4 - 340939*n^3 - 550044*n^2 + 232560*n + 81000)*a(n-2) - 6*(2482*n^7 - 16551*n^6 + 12327*n^5 + 105521*n^4 - 209527*n^3 + 39268*n^2 + 134496*n - 70920)*a(n-3) + 2*(4964*n^7 - 40548*n^6 + 79541*n^5 + 175950*n^4 - 881383*n^3 + 1128540*n^2 - 373392*n - 118152)*a(n-4) + 6*(2482*n^7 - 23997*n^6 + 57469*n^5 + 92361*n^4 - 533975*n^3 + 581508*n^2 - 19896*n - 133272)*a(n-5) + 60*(n-5)*(2*n - 7)*(n^3 - 34*n^2 + 132*n - 144)*a(n-6) - 2*(n-6)*(2*n - 9)*(1241*n^5 - 2691*n^4 - 8779*n^3 + 19851*n^2 - 1570*n - 5748)*a(n-7). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 4.2142983943967634... is the root of the equation 4 - 12*d^2 - 8*d^3 + 12*d^4 - 20*d^5 + d^7 = 0 and c = 2.164253883870... - Vaclav Kotesovec, Sep 10 2013
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*n-4*k+3,n-3*k+1)/(2*n-4*k+3). - Seiichi Manyama, Aug 28 2023