cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218276 Convolution of level 2 of the divisor function.

Original entry on oeis.org

0, 0, 1, 3, 7, 16, 22, 45, 49, 100, 95, 178, 161, 304, 250, 465, 372, 676, 525, 952, 720, 1280, 946, 1702, 1217, 2156, 1570, 2764, 1925, 3376, 2360, 4185, 2912, 4944, 3404, 6121, 4047, 6960, 4858, 8344, 5530, 9600, 6391, 11246, 7513, 12496, 8372, 14926, 9486
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

Belongs to the family of convolution sums: Sum_{m < n*N} sigma(n)*sigma(n - N*m).
Named W2(n) by S. Alaca and K. S. Williams.
The convolution sum: Sum_{m < n} sigma(n)*sigma(n - m) = W1(n) is A000385(n+1).

Crossrefs

Programs

  • Maple
    with(numtheory): seq((1/48)*(22*sigma[3](n) - 2*sigma[3](2*n) + 5*sigma(n) - sigma(2*n) - 24*n*sigma(n) + 6*n*sigma(2*n)),n=1..60); # Ridouane Oudra, Feb 23 2021
  • Mathematica
    Table[Sum[DivisorSigma[1, k]*DivisorSigma[1, n - 2*k], {k, 1, Floor[(n - 1)/2]}], {n, 1, 50}] (* G. C. Greubel, Dec 24 2016 *)
  • PARI
    lista(nn) = {for (i=1, nn, s = sum(m=1, floor((i-1)/2), sigma(m)*sigma(i-2*m)); print1(s , ", "););}
    
  • PARI
    lista(nn) = {for (i=1, nn, v = sigma(i,3)/12 - i*sigma(i)/8 + sigma(i)/24;if (i%2 == 0, v += sigma(i/2,3)/3 - i*sigma(i/2)/4 + sigma(i/2)/24); print1(v , ", "););}

Formula

a(n) = Sum_{m < 2*n} sigma(n)*sigma(n - 2*m).
a(n) = sigma_3(n)/12 + sigma_3(n/2)/3 - n*sigma(n)/8 - n*sigma(n/2)/4 + sigma(n)/24 + sigma(n/2)/24.
a(n) = (1/48)*(22*sigma_3(n) - 2*sigma_3(2*n) + 5*sigma(n) - sigma(2*n) - 24*n*sigma(n) + 6*n*sigma(2*n)). - Ridouane Oudra, Feb 23 2021