A218293 Number of standard Young tableaux with shapes corresponding to partitions into distinct parts.
1, 1, 1, 3, 4, 10, 31, 70, 190, 561, 2191, 6226, 22683, 74152, 283349, 1211354, 4572672, 18844177, 77585825, 327472752, 1418056071, 7083303437, 31251988918, 153456264178, 723293387594, 3596567095155, 17360616601051, 89955643932801, 486526881887485, 2551613423040841, 14029592127656040, 76756835252971657, 428044848852530252
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..120
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local s; s:=i*(i+1)/2; `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0, g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i])))) end: a:= n-> g(n, n, []): seq(a(n), n=0..40); # Alois P. Heinz, Nov 08 2012
-
Mathematica
h[l_List] := Module[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j + Sum[ If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := Module[{s=i*(i+1)/2}, If[n == s, h[Join[l, Table[i-j, {j, 0, i-1}]]], If[n > s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)