A218357 Minimal order of degree-n irreducible polynomials over GF(5).
1, 3, 31, 13, 11, 7, 19531, 32, 19, 33, 12207031, 91, 305175781, 29, 181, 17, 409, 27, 191, 41, 379, 23, 8971, 224, 101, 5227, 109, 377, 59, 61, 1861, 128, 199, 1227, 211, 37, 149, 573, 79, 241, 2238236249, 43, 1644512641, 89, 209, 47, 177635683940025046467781066894531
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..520
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Polynomial Order
Programs
-
Maple
with(numtheory): M:= proc(n) M(n):= divisors(5^n-1) minus U(n-1) end: U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: a:= n-> min(M(n)[]): seq(a(n), n=1..47);
-
Mathematica
M[n_] := M[n] = Divisors[5^n - 1] ~Complement~ U[n-1]; U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]]; a[n_] := Min[M[n]]; Table[a[n], {n, 1, 47}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
Comments