cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218357 Minimal order of degree-n irreducible polynomials over GF(5).

Original entry on oeis.org

1, 3, 31, 13, 11, 7, 19531, 32, 19, 33, 12207031, 91, 305175781, 29, 181, 17, 409, 27, 191, 41, 379, 23, 8971, 224, 101, 5227, 109, 377, 59, 61, 1861, 128, 199, 1227, 211, 37, 149, 573, 79, 241, 2238236249, 43, 1644512641, 89, 209, 47, 177635683940025046467781066894531
Offset: 1

Views

Author

Alois P. Heinz, Oct 27 2012

Keywords

Comments

a(n) < 5^n.
a(n) <= A143665(n). For prime n, a(n) = A143665(n). - Max Alekseyev, Apr 30 2022

Crossrefs

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(5^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    a:= n-> min(M(n)[]):
    seq(a(n), n=1..47);
  • Mathematica
    M[n_] := M[n] = Divisors[5^n - 1] ~Complement~ U[n-1];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
    a[n_] := Min[M[n]];
    Table[a[n], {n, 1, 47}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

a(n) = min(M(n)) with M(n) = {d : d|(5^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A212485(n,1) = A213224(n,3).