A059887
a(n) = |{m : multiplicative order of 5 mod m=n}|.
Original entry on oeis.org
3, 5, 3, 12, 9, 37, 3, 28, 18, 47, 3, 180, 3, 53, 81, 176, 9, 446, 21, 564, 39, 117, 9, 884, 180, 53, 360, 244, 21, 5959, 9, 800, 39, 111, 369, 9536, 21, 483, 39, 5476, 9, 18289, 9, 1140, 2958, 111, 3, 9424, 6, 3852, 177, 884, 21, 81048, 561, 1188, 69, 227, 9
Offset: 1
-
with(numtheory):
a:= n-> add(mobius(n/d)*tau(5^d-1), d=divisors(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 12 2012
-
a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 5^d-1], {d, Divisors[n]}];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 13 2024, after Alois P. Heinz *)
-
a(n) = sumdiv(n, d, moebius(n/d)*numdiv(5^d-1)); \\ Michel Marcus, Dec 13 2024
A143665
a(n) is the least prime such that the multiplicative order of 5 mod a(n) equals n.
Original entry on oeis.org
2, 3, 31, 13, 11, 7, 19531, 313, 19, 521, 12207031, 601, 305175781, 29, 181, 17, 409, 5167, 191, 41, 379, 23, 8971, 390001, 101, 5227, 109, 234750601, 59, 61, 1861, 2593, 199, 3061, 211, 37, 149, 761, 79, 241, 2238236249, 43, 1644512641, 89, 1171, 47
Offset: 1
Cf.
A112927 (base 2),
A143663 (base 3),
A112092 (base 4),
A143665 (base 5),
A379639 (base 6),
A379640 (base 7),
A379641 (base 8),
A379642 (base 9),
A007138 (base 10),
A379644 (base 11),
A252170 (base 12).
-
p = 2; t = Table[0, {100}]; While[p < 3000000001, a = MultiplicativeOrder[5, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p]; p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)
A003060
Smallest number with reciprocal of period length n in decimal (base 10).
Original entry on oeis.org
1, 3, 11, 27, 101, 41, 7, 239, 73, 81, 451, 21649, 707, 53, 2629, 31, 17, 2071723, 19, 1111111111111111111, 3541, 43, 23, 11111111111111111111111, 511, 21401, 583, 243, 29, 3191, 211, 2791, 353, 67, 103, 71, 1919, 2028119, 909090909090909091
Offset: 0
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- "Cycle lengths of reciprocals", Popular Computing (Calabasas, CA), Vol. 1 (No. 4, Jul 1973), pp. 12-14.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Smallest primitive divisors of b^n-1:
A212953 (b=2),
A218356 (b=3),
A218357 (b=5),
A218358 (b=7), this sequence (b=10),
A218359 (b=11),
A218360 (b=13),
A218361 (b=17),
A218362 (b=19),
A218363 (b=23),
A218364 (b=29).
-
a[n_] := First[ Select[ Divisors[10^n - 1], MultiplicativeOrder[10, #] == n &, 1]]; a[0] = 1; a[1] = 3; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Jul 13 2012, after T. D. Noe *)
-
apply( {A003060(n)=!fordiv(10^n-!!n, d, d>1 && znorder(Mod(10,d))==n && return(d))}, [0..50]) \\ M. F. Hasler, Jun 28 2022
b-file truncated at uncertain term a(439) by
Max Alekseyev, Apr 30 2022
A213224
Minimal order A(n,k) of degree-n irreducible polynomials over GF(prime(k)); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 7, 1, 3, 13, 5, 1, 4, 31, 5, 31, 1, 3, 9, 13, 11, 9, 1, 7, 7, 5, 11, 7, 127, 1, 3, 9, 16, 2801, 7, 1093, 17, 1, 4, 307, 5, 25, 36, 19531, 32, 73, 1, 3, 27, 5, 30941, 9, 29, 32, 757, 11, 1, 3, 7, 16, 88741, 63, 43, 64, 19, 44, 23
Offset: 1
A(4,1) = 5: The degree-4 irreducible polynomials p over GF(prime(1)) = GF(2) are 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. Their orders (i.e., the smallest integer e for which p divides x^e+1) are 5, 15, 15, and the minimal order is 5. (1+x+x^2+x^3+x^4) * (1+x) == x^5+1 (mod 2).
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 3, 4, 3, 7, 3, 4, ...
7, 13, 31, 9, 7, 9, 307, 27, ...
5, 5, 13, 5, 16, 5, 5, 16, ...
31, 11, 11, 2801, 25, 30941, 88741, 151, ...
9, 7, 7, 36, 9, 63, 7, 7, ...
127, 1093, 19531, 29, 43, 5229043, 25646167, 701, ...
17, 32, 32, 64, 32, 32, 128, 17, ...
-
with(numtheory):
M:= proc(n, i) option remember;
divisors(ithprime(i)^n-1) minus U(n-1, i)
end:
U:= proc(n, i) option remember;
`if`(n=0, {}, M(n, i) union U(n-1, i))
end:
A:= (n, k)-> min(M(n, k)[]):
seq(seq(A(n, d+1-n), n=1..d), d=1..14);
-
M[n_, i_] := M[n, i] = Divisors[Prime[i]^n - 1] ~Complement~ U[n-1, i]; U[n_, i_] := U[n, i] = If[n == 0, {}, M[n, i] ~Union~ U[n-1, i]]; A[n_, k_] := Min[M[n, k]]; Table[Table[A[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
A366613
Sum of the divisors of 5^n-1.
Original entry on oeis.org
7, 60, 224, 1736, 6048, 49920, 136724, 1107792, 3718400, 27060480, 85449224, 869499904, 2136230474, 15820920000, 61359427584, 461863805760, 1338408456700, 13177159680000, 33558717136896, 301282248701952, 863701914880000, 6313641012910080, 20863951122979048
Offset: 1
a(3)=224 because 5^3-1 has divisors {1, 2, 4, 31, 62, 124}.
-
a:=n->numtheory[sigma](5^n-1):
seq(a(n), n=1..100);
-
DivisorSigma[1, 5^Range[30]-1]
A366612
Number of divisors of 5^n-1.
Original entry on oeis.org
3, 8, 6, 20, 12, 48, 6, 48, 24, 64, 6, 240, 6, 64, 96, 224, 12, 512, 24, 640, 48, 128, 12, 1152, 192, 64, 384, 320, 24, 6144, 12, 1024, 48, 128, 384, 10240, 24, 512, 48, 6144, 12, 18432, 12, 1280, 3072, 128, 6, 10752, 12, 4096, 192, 960, 24, 81920, 576, 1536
Offset: 1
a(3)=6 because 5^3-1 has divisors {1, 2, 4, 31, 62, 124}.
-
a:=n->numtheory[tau](5^n-1):
seq(a(n), n=1..100);
-
DivisorSigma[0, 5^Range[100]-1]
-
a(n) = numdiv(5^n-1);
A366611
Number of distinct prime divisors of 5^n - 1.
Original entry on oeis.org
1, 2, 2, 3, 3, 4, 2, 4, 4, 5, 2, 6, 2, 5, 6, 6, 3, 7, 4, 8, 5, 6, 3, 8, 7, 5, 8, 7, 4, 11, 3, 8, 5, 6, 8, 11, 4, 8, 5, 11, 3, 12, 3, 9, 11, 6, 2, 11, 3, 11, 7, 8, 4, 14, 8, 9, 6, 7, 3, 17, 4, 7, 10, 11, 7, 12, 6, 11, 8, 14, 3, 16, 4, 8, 15, 11, 6, 11, 4, 15
Offset: 1
-
for(n = 1, 100, print1(omega(5^n - 1), ", "))
A212485
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order.
Original entry on oeis.org
1, 2, 4, 3, 6, 8, 12, 24, 31, 62, 124, 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624, 11, 22, 44, 71, 142, 284, 781, 1562, 3124, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 93, 126, 168, 186, 217, 248, 252, 279, 372, 434, 504, 558, 651, 744, 868, 1116
Offset: 1
Triangle T(n,k) begins:
1, 2, 4;
3, 6, 8, 12, 24;
31, 62, 124;
13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624;
11, 22, 44, 71, 142, 284, 781, 1562, 3124;
...
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560.
-
with(numtheory):
M:= proc(n) option remember;
`if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1))
end:
U:= proc(n) option remember;
`if`(n=0, {}, M(n) union U(n-1))
end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..8);
-
M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* Jean-François Alcover, Jun 10 2018, from Maple *)
Showing 1-8 of 8 results.
Comments