A218395 Numbers whose square is the sum of the squares of 11 consecutive integers.
11, 77, 143, 1529, 2849, 30503, 56837, 608531, 1133891, 12140117, 22620983, 242193809, 451285769, 4831736063, 9003094397, 96392527451, 179610602171, 1923018812957, 3583208949023, 38363983731689, 71484568378289, 765356655820823, 1426108158616757
Offset: 0
Examples
For n=6, Sum_{z=17132..17142} z^2 = 3230444569; a(6) = sqrt(3230444569) = 56837; b(6) = sqrt((a(6)^2-110)/11) = 17137; x(6) = b(6)-5 = 17132.
Links
- V. Pletser, Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials, arXiv preprint arXiv:1409.7972 [math.NT], 2014. See Table 1 p. 7.
- Index entries for linear recurrences with constant coefficients, signature (0,20,0,-1).
Crossrefs
Programs
-
Maple
s:=0: n:=-1: for j from -5 to 5 do s:=s+j^2: end do: for z from -4 to 100000 do s:=s-(z-1)^2+(z+10)^2: r:=sqrt(s): if (r=floor(r)) then n:=n+1: a(n):=r: x(n):=z: b(n):=sqrt((s-110)/11): print(n,a(n),b(n),x(n)): end if: end do:
-
Mathematica
LinearRecurrence[{0,20,0,-1},{11,77,143,1529},30] (* Harvey P. Dale, Aug 15 2022 *)
Formula
a(n) = 20*a(n-2) - a(n-4); b(n) = 20*b(n-2) - b(n-4);
a(n) = 10*a(n-2) + 33*b(n-2); b(n) = 3*a(n-2) + 10*b(n-2).
a(n) = a(n-1) + 20*a(n-2) - 20*a(n-3) - a(n-4) + a(n-5).
G.f.: 11 * (1-x)*(1+8*x+x^2) / (1 - 20*x^2 + x^4).
With r=sqrt(11); s=10+3*r; t=10-3*r:
a(2*n) = ((11+r)*s^n + (11-r)*t^n)/2.
a(2*n+1) = ((77+23*r) * s^n + (77-23*r)*t^n)/2.
a(n) = 11 * A198947(n+1). - Bill McEachen, Dec 01 2022
Comments