A218458 a(n) = 2*n^3 - 163*n^2 + 2777*n - 11927.
-11927, -9311, -7009, -5009, -3299, -1867, -701, 211, 881, 1321, 1543, 1559, 1381, 1021, 491, -197, -1031, -1999, -3089, -4289, -5587, -6971, -8429, -9949, -11519, -13127, -14761, -16409, -18059, -19699, -21317, -22901, -24439, -25919
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[2*n^3 - 163*n^2 + 2777*n - 11927 : n in [0..60]]; // Wesley Ivan Hurt, Apr 21 2021
-
Mathematica
Table[2n^3-163n^2+2777n-11927,{n,0,99}] LinearRecurrence[{4,-6,4,-1},{-11927,-9311,-7009,-5009},40] (* Harvey P. Dale, Jan 31 2017 *)
-
Maxima
A218458(n):=2*n^3-163*n^2+2777*n-11927$ makelist(A218458(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
Formula
G.f.: (-11927+38397*x-41327*x^2+14869*x^3)/(x-1)^4. - R. J. Mathar, Nov 07 2012
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 21 2021
Comments