cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218694 Carlitz compositions of n into odd parts.

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 2, 3, 6, 9, 10, 13, 22, 32, 40, 56, 86, 122, 164, 229, 332, 474, 656, 914, 1310, 1867, 2604, 3648, 5184, 7346, 10318, 14506, 20516, 29022, 40880, 57548, 81260, 114810, 161864, 228092, 321892, 454444, 640954, 903715, 1274998, 1799320, 2538218, 3579714, 5049954, 7125359, 10051844
Offset: 0

Views

Author

Joerg Arndt, Nov 04 2012

Keywords

Comments

Carlitz compositions are compositions where adjacent parts are distinct (see A003242).

Examples

			There are a(12) = 22 such compositions of 12:
[ 1]  1 3 1 3 1 3
[ 2]  1 3 1 7
[ 3]  1 3 5 3
[ 4]  1 3 7 1
[ 5]  1 5 1 5
[ 6]  1 7 1 3
[ 7]  1 7 3 1
[ 8]  1 11
[ 9]  3 1 3 1 3 1
[10]  3 1 3 5
[11]  3 1 5 3
[12]  3 1 7 1
[13]  3 5 1 3
[14]  3 5 3 1
[15]  3 9
[16]  5 1 5 1
[17]  5 3 1 3
[18]  5 7
[19]  7 1 3 1
[20]  7 5
[21]  9 3
[22]  11 1
		

Crossrefs

Cf. A003242 (Carlitz compositions), A032021 (compositions into distinct odd parts), A032020 (compositions into distinct parts).

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
           add(`if`(j=t or irem(j, 2)=0, 0, b(n-j, j)), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..70);  # Alois P. Heinz, Nov 08 2012
  • Mathematica
    nn=20;CoefficientList[Series[1/(1-Sum[z^(2j+1)/(1+z^(2j+1)),{j,0,nn}]),{z,0,nn}],z] (* Geoffrey Critzer, Nov 21 2013 *)

Formula

G.f.: 1/( 1 - Sum_{j>=0} x^(2j+1)/(1 + x^(2j+1)) ). - Geoffrey Critzer, Nov 21 2013
a(n) ~ c / r^n, where r = 0.708865489663179258570259601255070249415... is the root of the equation sum_{j>=0} x^(2j+1)/(1 + x^(2j+1)) = 1, c = 0.3391570949344217123793275284038135702369824934927187... . - Vaclav Kotesovec, Aug 22 2014