A218694 Carlitz compositions of n into odd parts.
1, 1, 0, 1, 2, 2, 2, 3, 6, 9, 10, 13, 22, 32, 40, 56, 86, 122, 164, 229, 332, 474, 656, 914, 1310, 1867, 2604, 3648, 5184, 7346, 10318, 14506, 20516, 29022, 40880, 57548, 81260, 114810, 161864, 228092, 321892, 454444, 640954, 903715, 1274998, 1799320, 2538218, 3579714, 5049954, 7125359, 10051844
Offset: 0
Keywords
Examples
There are a(12) = 22 such compositions of 12: [ 1] 1 3 1 3 1 3 [ 2] 1 3 1 7 [ 3] 1 3 5 3 [ 4] 1 3 7 1 [ 5] 1 5 1 5 [ 6] 1 7 1 3 [ 7] 1 7 3 1 [ 8] 1 11 [ 9] 3 1 3 1 3 1 [10] 3 1 3 5 [11] 3 1 5 3 [12] 3 1 7 1 [13] 3 5 1 3 [14] 3 5 3 1 [15] 3 9 [16] 5 1 5 1 [17] 5 3 1 3 [18] 5 7 [19] 7 1 3 1 [20] 7 5 [21] 9 3 [22] 11 1
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms 0..262 from Joerg Arndt)
Crossrefs
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(j=t or irem(j, 2)=0, 0, b(n-j, j)), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..70); # Alois P. Heinz, Nov 08 2012
-
Mathematica
nn=20;CoefficientList[Series[1/(1-Sum[z^(2j+1)/(1+z^(2j+1)),{j,0,nn}]),{z,0,nn}],z] (* Geoffrey Critzer, Nov 21 2013 *)
Formula
G.f.: 1/( 1 - Sum_{j>=0} x^(2j+1)/(1 + x^(2j+1)) ). - Geoffrey Critzer, Nov 21 2013
a(n) ~ c / r^n, where r = 0.708865489663179258570259601255070249415... is the root of the equation sum_{j>=0} x^(2j+1)/(1 + x^(2j+1)) = 1, c = 0.3391570949344217123793275284038135702369824934927187... . - Vaclav Kotesovec, Aug 22 2014
Comments