A218722 a(n) = (19^n-1)/18.
0, 1, 20, 381, 7240, 137561, 2613660, 49659541, 943531280, 17927094321, 340614792100, 6471681049901, 122961939948120, 2336276859014281, 44389260321271340, 843395946104155461, 16024522975978953760, 304465936543600121441
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..700
- Index entries related to partial sums
- Index entries for linear recurrences with constant coefficients, signature (20,-19).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 20*Self(n-1)-19*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{20, -19}, {0, 1}, 40] (* Vincenzo Librandi, Nov 07 2012 *)
-
Maxima
A218722(n):=(19^n-1)/18$ makelist(A218722(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A218722(n)=19^n\18
Formula
a(n) = floor(19^n/18).
G.f.: x/((1-x)*(1-19*x)). - Bruno Berselli, Nov 06 2012
a(n) = 20*a(n-1) - 19*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(10*x)*sinh(9*x)/9. - Stefano Spezia, Mar 11 2023
Comments