A218726 a(n) = (23^n - 1)/22.
0, 1, 24, 553, 12720, 292561, 6728904, 154764793, 3559590240, 81870575521, 1883023236984, 43309534450633, 996119292364560, 22910743724384881, 526947105660852264, 12119783430199602073, 278755018894590847680, 6411365434575589496641, 147461404995238558422744
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..700
- Index entries related to partial sums.
- Index entries for linear recurrences with constant coefficients, signature (24,-23).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 24*Self(n-1)-23*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{24, -23}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *) (23^Range[0,20]-1)/22 (* Harvey P. Dale, Nov 09 2012 *)
-
Maxima
A218726(n):=(23^n-1)/22$ makelist(A218726(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
A218726(n)=23^n\22
Formula
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-23*x)).
a(n) = floor(23^n/22).
a(n) = 24*a(n-1) - 23*a(n-2). (End)
E.g.f.: exp(12*x)*sinh(11*x)/11. - Elmo R. Oliveira, Aug 27 2024
Comments