A218868 Triangular array read by rows: T(n,k) is the number of n-permutations that have exactly k distinct cycle lengths.
1, 2, 3, 3, 10, 14, 25, 95, 176, 424, 120, 721, 3269, 1050, 6406, 21202, 12712, 42561, 178443, 141876, 436402, 1622798, 1418400, 151200, 3628801, 17064179, 17061660, 2162160, 48073796, 177093256, 212254548, 41580000, 479001601, 2293658861, 2735287698, 719072640
Offset: 1
Examples
: 1; : 2; : 3, 3; : 10, 14; : 25, 95; : 176, 424, 120; : 721, 3269, 1050; : 6406, 21202, 12712; : 42561, 178443, 141876; : 436402, 1622798, 1418400, 151200;
Links
- Alois P. Heinz, Rows n = 1..170, flattened
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!* b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)): seq(T(n), n=1..16); # Alois P. Heinz, Aug 21 2014
-
Mathematica
nn=10;a=Product[1-y+y Exp[x^i/i],{i,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[a ,{x,0,nn}],{x,y}],1]]//Grid
Formula
E.g.f.: Product_{i>=1} (1 + y*exp(x^i/i) - y).
Comments