cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A218871 Second column of A218869.

Original entry on oeis.org

0, 2, 4, 12, 20, 52, 100, 214, 414, 876, 1722, 3524, 6992, 14144, 28188, 56720, 113180, 227084, 453748, 908804, 1816726, 3636336, 7270770, 14547228, 29090912, 58192994, 116378984, 232780848, 465546796, 931139720, 1862251212, 3724592874, 7449128940, 14898442336, 29796768552
Offset: 2

Views

Author

N. J. A. Sloane, Nov 07 2012

Keywords

Crossrefs

Cf. A218869.

A122536 Number of binary sequences of length n with no initial repeats (or, with no final repeats).

Original entry on oeis.org

2, 2, 4, 6, 12, 20, 40, 74, 148, 286, 572, 1124, 2248, 4460, 8920, 17768, 35536, 70930, 141860, 283440, 566880, 1133200, 2266400, 4531686, 9063372, 18124522, 36249044, 72493652, 144987304, 289965744
Offset: 1

Views

Author

Sarah Nibs, Sep 18 2006

Keywords

Comments

An initial repeat of a string S is a number k>=1 such that S(i)=S(i+k) for i=0..k-1. In other words, the first k symbols are the same as the next k symbols, e.g., ABCDABCDZQQ has an initial repeat of size 4.
Equivalently, this is the number of binary sequences of length n with curling number 1. See A216955. - N. J. A. Sloane, Sep 26 2012

Examples

			a(4)=6: 0100, 0110, 0111, 1000, 1001 and 1011. (But not 00**, 11**, 0101, 1010.)
		

Crossrefs

Twice A093371. Leading column of each of the triangles A216955, A217209, A218869, A218870. Different from, but easily confused with, A003000 and A216957. - N. J. A. Sloane, Sep 26 2012
See A121880 for difference from 2^n.

Formula

Conjecture: a_n ~ C * 2^n where C is 0.27004339525895354325... [Chaffin, Linderman, Sloane, Wilks, 2012]
a(2n+1)=2*a(2n) = A211965(n+1), a(2n)=2*a(2n-1)-A216958(n) = A211966(n). - N. J. A. Sloane, Sep 28 2012
a(1) = 2; a(2n) = 2*[a(2n-1) - A216959(n)], n >= 1. - Daniel Forgues, Feb 25 2015

Extensions

a(31)-a(71) computed from recurrence and the first 30 terms of A216958 by N. J. A. Sloane, Sep 28 2012, Oct 25 2012

A218870 Triangle read by rows: T(n,k) = number of aperiodic binary sequences of length n with curling number <= k (1 <= k <= n).

Original entry on oeis.org

2, 2, 2, 4, 6, 6, 6, 10, 12, 12, 12, 24, 28, 30, 30, 20, 40, 48, 52, 54, 54, 40, 92, 112, 120, 124, 126, 126, 74, 174, 210, 226, 234, 238, 240, 240, 148, 362, 438, 474, 490, 498, 502, 504, 504, 286, 700, 860, 928, 960, 976, 984, 988, 990, 990, 572, 1448, 1776, 1916, 1984, 2016, 2032, 2040, 2044, 2046, 2046
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2012

Keywords

Comments

S is aperiodic if it is not of the form S = T^m with m > 1.
Rows are partial sums of rows of A218869.
Final entries in rows form A027375. First column is A122536.

Examples

			Triangle begins:
[2]
[2, 2]
[4, 6, 6]
[6, 10, 12, 12]
[12, 24, 28, 30, 30]
[20, 40, 48, 52, 54, 54]
[40, 92, 112, 120, 124, 126, 126]
[74, 174, 210, 226, 234, 238, 240, 240]
[148, 362, 438, 474, 490, 498, 502, 504, 504]
[286, 700, 860, 928, 960, 976, 984, 988, 990, 990]
[572, 1448, 1776, 1916, 1984, 2016, 2032, 2040, 2044, 2046, 2046]
...
		

Crossrefs

A218875 Triangle read by rows: T(n,k) (1 <= k <= n) = number of robust primitive binary sequences of length n and curling number k.

Original entry on oeis.org

2, 2, 0, 4, 2, 0, 6, 4, 2, 0, 10, 12, 4, 2, 0, 20, 20, 8, 4, 2, 0, 36, 52, 20, 8, 4, 2, 0, 72, 98, 36, 16, 8, 4, 2, 0, 142, 214, 76, 36, 16, 8, 4, 2, 0, 280, 414, 160, 68, 32, 16, 8, 4, 2, 0, 560, 870, 326, 140, 68, 32, 16, 8, 4, 2, 0, 1114, 1720, 640, 276, 132, 64, 32, 16, 8, 4, 2, 0
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2012

Keywords

Examples

			Triangle begins:
[2],
[2, 0],
[4, 2, 0],
[6, 4, 2, 0],
[10, 12, 4, 2, 0],
[20, 20, 8, 4, 2, 0],
[36, 52, 20, 8, 4, 2, 0],
[72, 98, 36, 16, 8, 4, 2, 0],
[142, 214, 76, 36, 16, 8, 4, 2, 0],
[280, 414, 160, 68, 32, 16, 8, 4, 2, 0],
...
		

Crossrefs

Cf. A216955, A218869, A218876. First column is A216958.

Formula

The triangle in A218869 is the sum of triangles A218875 and A218876.

A218876 Triangle read by rows: T(n,k) (1 <= k <= n) = number of non-robust primitive binary sequences of length n and curling number k.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2012

Keywords

Examples

			Triangle begins:
[0],
[0, 0],
[0, 0, 0],
[0, 0, 0, 0],
[2, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[4, 0, 0, 0, 0, 0, 0],
[2, 2, 0, 0, 0, 0, 0, 0],
[6, 0, 0, 0, 0, 0, 0, 0, 0],
[6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[12, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0],
[10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...
		

Crossrefs

Formula

The triangle in A218869 is the sum of triangles A218875 and A218876.
Showing 1-5 of 5 results.