cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219069 Triangle read by rows: T(n,k) = n^4 + (n*k)^2 + k^4, 1 <= k <= n.

Original entry on oeis.org

3, 21, 48, 91, 133, 243, 273, 336, 481, 768, 651, 741, 931, 1281, 1875, 1333, 1456, 1701, 2128, 2821, 3888, 2451, 2613, 2923, 3441, 4251, 5461, 7203, 4161, 4368, 4753, 5376, 6321, 7696, 9633, 12288, 6643, 6901, 7371, 8113, 9211, 10773, 12931, 15841, 19683
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Comments

Entry 17a from July 9, 1796 in Gauss's Mathematical Diary: "Summa trium quadratorum continue proportionalium numquam primus esse potest: conspicuum exemplum novimus et quod congruum videtur. Confidamus." Paul Bachmann explains that this note is based on Gauss's discovery of this factorization: n^4 + n^2*k^2 + k^4 = (n^2 + n*k + k^2) * (n^2 - n*k + k^2).

Examples

			The triangle begins:
.  1:      3
.  2:     21    48
.  3:     91   133   243
.  4:    273   336   481   768
.  5:    651   741   931  1281  1875
.  6:   1333  1456  1701  2128  2821  3888
.  7:   2451  2613  2923  3441  4251  5461  7203
.  8:   4161  4368  4753  5376  6321  7696  9633 12288
.  9:   6643  6901  7371  8113  9211 10773 12931 15841 19683
. 10:  10101 10416 10981 11856 13125 14896 17301 20496 24661 30000
. 11:  14763 15141 15811 16833 18291 20293 22971 26481 31003 36741 43923
		

References

  • Carl Friedrich Gauss (Hans Wussing, ed.), Mathematisches Tagebuch 1796-1814, Ostwalds Klassiker der Exakten Wissenschaften, Leipzig (1976, 1979), pp. 43, 63, 90.

Crossrefs

Cf. A059826 (left edge), A219056 (right edge), A219070 (row sums).
Cf. A239426 (central terms).
Cf. A243201 (diagonal (n + 1, n)). - Mathew Englander, Jun 03 2014

Programs

  • Haskell
    a219069 n k = a219069_tabl !! (n-1) !! (k-1)
    a219069_row n = a219069_tabl !! n
    a219069_tabl = zipWith (zipWith (*)) a215630_tabl a215631_tabl
  • Mathematica
    Table[n^4+(n*k)^2+k^4,{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 05 2020 *)

Formula

T(n,k) = A215630(n,k) * A215631(n,k), 1 <= k <= n.