cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A059826 a(n) = (n^2 - n + 1)*(n^2 + n + 1).

Original entry on oeis.org

1, 3, 21, 91, 273, 651, 1333, 2451, 4161, 6643, 10101, 14763, 20881, 28731, 38613, 50851, 65793, 83811, 105301, 130683, 160401, 194923, 234741, 280371, 332353, 391251, 457653, 532171, 615441, 708123, 810901, 924483, 1049601, 1187011, 1337493, 1501851, 1680913
Offset: 0

Views

Author

N. J. A. Sloane, Feb 24 2001

Keywords

Comments

Main diagonal of A082039. - Paul Barry, Apr 02 2003
The base of the natural logarithms e = 2*Sum_{n>=0} 1/(a(n)*n!) and zeta(2) = Pi^2/6 = 1 + 2*Sum_{n>=1} (-1)^(n+1)/(a(n)*n^2). - Peter Bala, Jan 20 2008

Crossrefs

Main diagonal of A082039.

Programs

  • Magma
    [n^4+n^2+1 : n in [0..50]]; // Wesley Ivan Hurt, Jun 09 2014
  • Maple
    with(combinat): seq(fibonacci(3,n)+n^4, n=0..40); # Zerinvary Lajos, May 25 2008
  • Mathematica
    Table[n^4 + n^2 + 1, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 09 2014 *)
  • PARI
    a(n) = { my(f=n^2 + 1); (f - n)*(f + n) } \\ Harry J. Smith, Jun 29 2009
    

Formula

a(n) = n^4+n^2+1. - Paul Barry, Apr 02 2003
a(n) = (n^2-n+1) * (n^2+n+1) = A002061(n) * A002061(n+1), products of two consecutive central polygonal numbers. a(n) = (n^6-1)/(n^2-1), n>1. a(n) = (n^5-n^4+n^3-n^2+n-1)/(n-1) = A062159(n)/(n-1), n>1. - Alexander Adamchuk, Apr 12 2006
O.g.f.: (-1+2*x-16*x^2-6*x^3-3*x^4) / (x-1)^5. - R. J. Mathar, Feb 26 2008
a(n) = A219069(n,1), for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n+2) = (n^2+3n+3) * (n^2+5n+7) = (t(n)+t(n+2)) * (t(n+1)+t(n+3)), where t=A000217 are triangular numbers. For n>=1, a(n+2) = t(2*t(n+2)+t(n)) -t(t(n)-1). - J. M. Bergot, Nov 29 2012
4*a(n) = (n^2+n+1)^2+(n^2-n+1)^2+(n^2+n-1)^2+(n^2-n-1)^2. - Bruno Berselli, Jul 03 2014
a(n) = A002061(n^2). - Franklin T. Adams-Watters, Aug 01 2014
Sum_{n>=0} 1/a(n) = 1/2 + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6. - Amiram Eldar, Feb 14 2021

A219056 a(n) = 3*n^4.

Original entry on oeis.org

0, 3, 48, 243, 768, 1875, 3888, 7203, 12288, 19683, 30000, 43923, 62208, 85683, 115248, 151875, 196608, 250563, 314928, 390963, 480000, 583443, 702768, 839523, 995328, 1171875, 1370928, 1594323, 1843968, 2121843, 2430000, 2770563, 3145728, 3557763, 4009008
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Crossrefs

Programs

  • Haskell
    a219056 = (* 3) . (^ 4)
    
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0, 3, 48, 243, 768},100] (* or *) Table[3*n^4, {n,0,50}] (* G. Greubel, Jun 22 2016 *)
  • Maxima
    makelist(3*n^4,n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n) = 3*n^4; \\ Michel Marcus, Jan 26 2022

Formula

a(n) = A219069(n,n) for n > 0;
a(n) = A008585(A000583(n)) = A000290(n)*A033428(n).
From Chai Wah Wu, Jun 22 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: 3*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. (End)
E.g.f.: 3*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Jun 22 2016

A243201 Odd octagonal numbers indexed by triangular numbers.

Original entry on oeis.org

1, 21, 133, 481, 1281, 2821, 5461, 9633, 15841, 24661, 36741, 52801, 73633, 100101, 133141, 173761, 223041, 282133, 352261, 434721, 530881, 642181, 770133, 916321, 1082401, 1270101, 1481221, 1717633, 1981281, 2274181, 2598421, 2956161, 3349633, 3781141, 4253061, 4767841, 5328001
Offset: 0

Views

Author

Mathew Englander, Jun 01 2014

Keywords

Examples

			a(2) = 133 because the second triangular number is 3 and third odd octagonal number is 133.
a(3) = 481 because the third triangular number is 6 and the sixth odd octagonal number is 481.
a(4) = 1281 because the fourth triangular number is 10 and the tenth odd octagonal number is 1281.
		

Crossrefs

Row 5 of A059259 (coefficients of 1 + 4*n + 7*n^2 + 6*n^3 + 3*n^4 + 0*n^5 which is a formula for the within sequence).
Column 5 of A081297.
Column 6 of A072024.
Diagonal T(n + 1, n) of A219069, n > 0.

Programs

  • Magma
    [3*n^4+6*n^3+7*n^2+4*n+1: n in [0..40]]; // Bruno Berselli, Jun 03 2014
    
  • Mathematica
    Table[((3 n^2 + 3 n + 2)^2 - 1)/3, {n, 0, 39}] (* Alonso del Arte, Jun 01 2014 *)
  • Sage
    [3*n^4+6*n^3+7*n^2+4*n+1 for n in (0..40)] # Bruno Berselli, Jun 03 2014

Formula

a(n) = 3*n^4 + 6*n^3 + 7*n^2 + 4*n + 1.
a(n) = (n^2 + n + 1)*(3*n^2 + 3*n + 1).
a(n) = ((3*n^2 + 3*n + 2)^2 - 1)/3.
a(n) = A003215(n) * A002061(n + 1).
a(n) = A022522(n) / A005408(n).
a(n) = A000567(n^2 + n + 1).
a(n) = A014641((n^2 + n)/2).
a(n) = 1 + A140676(n^2 + n).
a(n) = 1 + A187156((n^2 + n + 4)/2) (empirical).
G.f.: (1 + 16*x + 38*x^2 + 16*x^3 + x^4)/(1 - x)^5. - Bruno Berselli, Jun 03 2014
E.g.f.: exp(x)*(1 + 20*x + 46*x^2 + 24*x^3 + 3*x^4). - Stefano Spezia, Apr 16 2022

A239426 21*n^4 - 36*n^3 + 25*n^2 - 8*n + 1.

Original entry on oeis.org

1, 3, 133, 931, 3441, 9211, 20293, 39243, 69121, 113491, 176421, 262483, 376753, 524811, 712741, 947131, 1235073, 1584163, 2002501, 2498691, 3081841, 3761563, 4547973, 5451691, 6483841, 7656051, 8980453, 10469683, 12136881, 13995691, 16060261, 18345243
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2014

Keywords

Comments

For n > 0: a(n) = A219069(2*n-1,n).

Programs

  • Haskell
    a239426 n = (((21 * n - 36) * n + 25) * n - 8) * n + 1
    
  • Magma
    [21*n^4-36*n^3+25*n^2-8*n+1: n in [0..31]]; // Vincenzo Librandi, Mar 21 2014
  • Mathematica
    Table[(21 n^4 - 36 n^3 + 25 n^2 - 8 n + 1), {n, 0, 40}] (* Vincenzo Librandi, Mar 21 2014 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,3,133,931,3441},40] (* Harvey P. Dale, May 04 2016 *)

Formula

a(n) = (1-3*n+3*n^2) * (1-5*n+7*n^2) = A003215(n-1) * A239449(n).
G.f.: ( -1+2*x-128*x^2-286*x^3-91*x^4 ) / (x-1)^5 . - R. J. Mathar, Mar 31 2014

A219070 a(n) = (46*n^5 + 30*n^4 + 15*n^3 - n) / 30.

Original entry on oeis.org

0, 3, 69, 467, 1858, 5479, 13327, 28343, 54596, 97467, 163833, 262251, 403142, 598975, 864451, 1216687, 1675400, 2263091, 3005229, 3930435, 5070666, 6461399, 8141815, 10154983, 12548044, 15372395, 18683873, 22542939, 27014862, 32169903, 38083499, 44836447
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Comments

For n > 0: row sums of the triangle A219069.

Crossrefs

Programs

  • Haskell
    a219070 n = n * (n * (n * (n * (46 * n + 30) + 15)) - 1) `div` 30 -- Reinhard Zumkeller
    
  • Mathematica
    Table[(46n^5 + 30n^4 + 15n^3 - n)/30, {n, 0, 39}] (* Alonso del Arte, Nov 12 2012 *)
  • Maxima
    A219070(n):=(46*n^5 + 30*n^4 + 15*n^3-n)/30$
    makelist(A219070(n),n,0,30); /* Martin Ettl, Nov 12 2012 */

Formula

a(n) = A000584(n) + A000290(n)*A000330(n) + A000538(n).
Showing 1-5 of 5 results.