cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001699 Number of binary trees of height n; or products (ways to insert parentheses) of height n when multiplication is non-commutative and non-associative.

Original entry on oeis.org

1, 1, 3, 21, 651, 457653, 210065930571, 44127887745696109598901, 1947270476915296449559659317606103024276803403, 3791862310265926082868235028027893277370233150300118107846437701158064808916492244872560821
Offset: 0

Views

Author

Keywords

Comments

Approaches 1.5028368...^(2^n), see A077496. Row sums of A065329 as square array. - Henry Bottomley, Oct 29 2001. Also row sum of square array A073345 (AK).

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 651*x^4 + 457653*x^5 + ... - _Michael Somos_, Jun 02 2019
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • T. K. Moon, Enumerations of binary trees, types of trees and the number of reversible variable length codes, submitted to Discrete Applied Mathematics, 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Row sums of A065329.
Column sums of A335919, A335920.

Programs

  • Maple
    s := proc(n) local i,j,ans; ans := [ 1 ]; for i to n do ans := [ op(ans),2*(add(j,j=ans)-ans[ i ])*ans[ i ]+ans[ i ]^2 ] od; RETURN(ans); end; s(10);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 2*a[n-1]*Sum[a[k], {k, 0, n-2}] + a[n-1]^2; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, May 16 2012 *)
    a[ n_] := If[ n < 2, Boole[n >= 0], With[{u = a[n - 1], v = a[n - 2]}, u (u + v + u/v)]]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    {a(n) = if( n<=1, n>=0, a(n-1) * (a(n-1) + a(n-2) + a(n-1) / a(n-2)))}; /* Michael Somos, 2000 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n): return 1 if n <= 1 else a(n-1) * (a(n-1) + a(n-2) + a(n-1)//a(n-2))
    print([a(n) for n in range(10)]) # Michael S. Branicky, Nov 10 2022 after Michael Somos

Formula

a(n+1) = 2*a(n)*(a(0) + ... + a(n-1)) + a(n)^2.
a(n+1) = a(n)^2 + a(n) + a(n)*sqrt(4*a(n)-3), if n > 0.
a(n) = A003095(n+1) - A003095(n) = A003095(n)^2 - A003095(n) + 1. - Henry Bottomley, Apr 26 2001; offset of LHS corrected by Anindya Bhattacharyya, Jun 21 2013
a(n) = A059826(A003095(n-1)).
From Peter Bala, Feb 03 2017: (Start)
a(n) = Product_{k = 1..n} A213437(k).
a(n) + a(n-1) = A213437(n+1) - A213437(n). (End)
a(n) = -a(n-2)^3 + a(n-1)^2 + 3*a(n-1)*a(n-2) + 2*a(n-2)^2 + 2*a(n-1) - 4*a(n-2) (see Narváez link for proof). - Boštjan Gec, Oct 10 2024

Extensions

Minor edits by Vaclav Kotesovec, Oct 04 2014

A082044 Main diagonal of A082043: a(n) = n^4 + 2*n^2 + 1.

Original entry on oeis.org

1, 4, 25, 100, 289, 676, 1369, 2500, 4225, 6724, 10201, 14884, 21025, 28900, 38809, 51076, 66049, 84100, 105625, 131044, 160801, 195364, 235225, 280900, 332929, 391876, 458329, 532900, 616225, 708964, 811801, 925444, 1050625, 1188100
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Comments

a(n) = longest side b of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (n^2+2, n^4+2*n^2+1, n^4+3*n^2+1).

Examples

			G.f. = 1 + 4*x + 25*x^2 + 100*x^3 + 289*x^4 + 676*x^5 + 1369*x^6 + ...
		

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.

Programs

  • Magma
    [(n^2+1)^2: n in [0..40]]; // G. C. Greubel, Dec 24 2022
    
  • Maple
    seq(fibonacci(3,n)^2,n=0..33); # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Fibonacci[3,Range[0,40]]^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,25,100,289},40] (* Harvey P. Dale, Feb 27 2015 *)
  • PARI
    a(n) = n^4+2*n^2+1; \\ Michel Marcus, Jan 22 2016
    
  • SageMath
    [(n^2+1)^2 for n in range(41)] # G. C. Greubel, Dec 24 2022

Formula

a(n) = n^4 + 2*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Feb 27 2015
a(n) = (4*A000217(n-1)^2 + 2*A002061(n))^2 / a(n-1). - Bruce J. Nicholson, Apr 17 2017
a(n) = A002522(n)^2 = (n^2 + 1)^2 = a(-n) for all n in Z. - Michael Somos, Apr 17 2017
G.f.: (1 - x + 15*x^2 + 5*x^3 + 4*x^4) / (1 - x)^5. - Michael Somos, Apr 17 2017
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=0} 1/a(n) = Pi^2*csch(Pi)^2/4 + Pi*coth(Pi)/4 + 1/2.
Sum_{n>=0} (-1)^n/a(n) = Pi^2*csch(Pi)*coth(Pi)/4 + Pi*csch(Pi)/4 + 1/2. (End)
E.g.f.: (1 + 3*x + 9*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 24 2022

A100019 a(n) = n^4 + n^3 + n^2.

Original entry on oeis.org

0, 3, 28, 117, 336, 775, 1548, 2793, 4672, 7371, 11100, 16093, 22608, 30927, 41356, 54225, 69888, 88723, 111132, 137541, 168400, 204183, 245388, 292537, 346176, 406875, 475228, 551853, 637392, 732511, 837900, 954273, 1082368, 1222947
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 19 2004

Keywords

Comments

a(n) are the numbers m such that: j^2 = j + m + sqrt(j*m) with corresponding numbers j given by A002061(n+1), and with sqrt(j*m) = A027444(n) = n* A002061(n+1). - Richard R. Forberg, Sep 03 2013.

Crossrefs

Programs

Formula

From Indranil Ghosh, Apr 15 2017: (Start)
G.f.: -x(3 + 13x + 7x^2 + x^3)/(x - 1)^5
E.g.f.: exp(x)*x*(3 + 11x + 7x^2 + x^3)
(End)

A123866 a(n) = n^6 - 1.

Original entry on oeis.org

0, 63, 728, 4095, 15624, 46655, 117648, 262143, 531440, 999999, 1771560, 2985983, 4826808, 7529535, 11390624, 16777215, 24137568, 34012223, 47045880, 63999999, 85766120, 113379903, 148035888, 191102975, 244140624, 308915775, 387420488
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 7 = 0 iff n mod 7 > 0: a(A008589(n))=6; a(A047304(n)) = 0; a(n) mod 7 = 6*(1-A082784(n)).
a(n) = A005563(n-1)*A059826(n) = A068601(n)*A001093(n). - Reinhard Zumkeller, Feb 02 2007

Crossrefs

Programs

Formula

G.f.: x^2*(63 + 287*x + 322*x^2 + 42*x^3 + 7*x^4 - x^5)/(1-x)^7. - Colin Barker, May 08 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(1)=0, a(2)=63, a(3)=728, a(4)=4095, a(5)=15624, a(6)=46655, a(7)=117648. - Harvey P. Dale, Nov 18 2012
Sum_{n>=2} 1/a(n) = 11/12 - Pi*sqrt(3)*tanh(Pi*sqrt(3)/2)/6. - Vaclav Kotesovec, Feb 14 2015
E.g.f.: 1 + (-1 + x + 31*x^2 + 90*x^3 + 65*x^4 + 15*x^5 + x^6)*exp(x). - G. C. Greubel, Aug 08 2019
Product_{n>=2} (1 + 1/a(n)) = 6*Pi^2*sech(sqrt(3)*Pi/2)^2. - Amiram Eldar, Jan 20 2021

A082039 Symmetric square array defined by T(n,k) = k^2*n^2 + k*n + 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 21, 13, 1, 1, 21, 43, 43, 21, 1, 1, 31, 73, 91, 73, 31, 1, 1, 43, 111, 157, 157, 111, 43, 1, 1, 57, 157, 241, 273, 241, 157, 57, 1, 1, 73, 211, 343, 421, 421, 343, 211, 73, 1, 1, 91, 273, 463, 601, 651, 601, 463, 273, 91, 1, 1, 111, 343, 601, 813, 931, 931, 813, 601, 343, 111, 1
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Examples

			Square array T(n,k) begins:
  1  1  1   1   1   1 ...
  1  3  7  13  21  31 ...
  1  7 21  43  73 111 ...
  1 13 43  91 157 241 ...
  1 21 73 157 273 421 ...
  ...
		

Crossrefs

Rows include A054569, A002061, A082040, A082041.
Main diagonal is A059826.
Cf. A082038.

A131471 a(n) = n^5+n.

Original entry on oeis.org

0, 2, 34, 246, 1028, 3130, 7782, 16814, 32776, 59058, 100010, 161062, 248844, 371306, 537838, 759390, 1048592, 1419874, 1889586, 2476118, 3200020, 4084122, 5153654, 6436366, 7962648, 9765650, 11881402, 14348934, 17210396, 20511178, 24300030, 28629182, 33554464
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

Formula

G.f.: 2*x*(1+11*x+36*x^2+11*x^3+x^4)/(-1+x)^6. - R. J. Mathar, Nov 14 2007
a(n) = A271208(n) + 1 = A271209(n) - 1. - Paolo Xausa, Nov 03 2024

A219069 Triangle read by rows: T(n,k) = n^4 + (n*k)^2 + k^4, 1 <= k <= n.

Original entry on oeis.org

3, 21, 48, 91, 133, 243, 273, 336, 481, 768, 651, 741, 931, 1281, 1875, 1333, 1456, 1701, 2128, 2821, 3888, 2451, 2613, 2923, 3441, 4251, 5461, 7203, 4161, 4368, 4753, 5376, 6321, 7696, 9633, 12288, 6643, 6901, 7371, 8113, 9211, 10773, 12931, 15841, 19683
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Comments

Entry 17a from July 9, 1796 in Gauss's Mathematical Diary: "Summa trium quadratorum continue proportionalium numquam primus esse potest: conspicuum exemplum novimus et quod congruum videtur. Confidamus." Paul Bachmann explains that this note is based on Gauss's discovery of this factorization: n^4 + n^2*k^2 + k^4 = (n^2 + n*k + k^2) * (n^2 - n*k + k^2).

Examples

			The triangle begins:
.  1:      3
.  2:     21    48
.  3:     91   133   243
.  4:    273   336   481   768
.  5:    651   741   931  1281  1875
.  6:   1333  1456  1701  2128  2821  3888
.  7:   2451  2613  2923  3441  4251  5461  7203
.  8:   4161  4368  4753  5376  6321  7696  9633 12288
.  9:   6643  6901  7371  8113  9211 10773 12931 15841 19683
. 10:  10101 10416 10981 11856 13125 14896 17301 20496 24661 30000
. 11:  14763 15141 15811 16833 18291 20293 22971 26481 31003 36741 43923
		

References

  • Carl Friedrich Gauss (Hans Wussing, ed.), Mathematisches Tagebuch 1796-1814, Ostwalds Klassiker der Exakten Wissenschaften, Leipzig (1976, 1979), pp. 43, 63, 90.

Crossrefs

Cf. A059826 (left edge), A219056 (right edge), A219070 (row sums).
Cf. A239426 (central terms).
Cf. A243201 (diagonal (n + 1, n)). - Mathew Englander, Jun 03 2014

Programs

  • Haskell
    a219069 n k = a219069_tabl !! (n-1) !! (k-1)
    a219069_row n = a219069_tabl !! n
    a219069_tabl = zipWith (zipWith (*)) a215630_tabl a215631_tabl
  • Mathematica
    Table[n^4+(n*k)^2+k^4,{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 05 2020 *)

Formula

T(n,k) = A215630(n,k) * A215631(n,k), 1 <= k <= n.

A131472 a(n) = n^6 + n.

Original entry on oeis.org

0, 2, 66, 732, 4100, 15630, 46662, 117656, 262152, 531450, 1000010, 1771572, 2985996, 4826822, 7529550, 11390640, 16777232, 24137586, 34012242, 47045900, 64000020, 85766142, 113379926, 148035912, 191103000, 244140650, 308915802
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [n^6+n: n in [0..30]]; // _Vincenzo Librandi+, Oct 01 2011
  • Mathematica
    Table[n^6+n,{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, May 12 2011 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,2,66,732,4100,15630,46662},60] (* Harvey P. Dale, May 03 2012 *)

Formula

G.f.: 2*x*(1 + 26*x + 156*x^2 + 146*x^3 + 31*x^4)/(1 - x)^7. - R. J. Mathar, Nov 14 2007
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(0)=0, a(1)=2, a(2)=66, a(3)=732, a(4)=4100, a(5)=15630, a(6)=46662. - Harvey P. Dale, May 03 2012
E.g.f.: exp(x)*x*(2 + 31*x + 90*x^2 + 65*x^3 + 15*x^4 + x^5). - Stefano Spezia, Oct 08 2022

A059848 As a square table by antidiagonals, the n-digit number which in base k starts 1010101...

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 2, 1, 0, 1, 4, 10, 10, 3, 0, 0, 1, 5, 17, 30, 21, 3, 1, 0, 1, 6, 26, 68, 91, 42, 4, 0, 0, 1, 7, 37, 130, 273, 273, 85, 4, 1, 0, 1, 8, 50, 222, 651, 1092, 820, 170, 5, 0, 0, 1, 9, 65, 350, 1333, 3255, 4369, 2460, 341, 5, 1, 0, 1, 10
Offset: 0

Views

Author

Henry Bottomley, Feb 26 2001

Keywords

Examples

			T(5,3)=10101 base 3=81+9+1=91; T(4,6)=1010 base 6=216+6=222. Table starts {0,0,0,0,...}, {1,1,1,1,...}, {0,1,2,3,...}, {1,2,5,10,...}, ...
		

Crossrefs

Formula

T(n, k)=floor[k^(n+1)/(k^2-1)] =T(n-2, k)+k^(n-1) =k*T(n-1, k)-((-1)^n-1)/2

A100606 a(n) = n^4 + n^3 + n.

Original entry on oeis.org

0, 3, 26, 111, 324, 755, 1518, 2751, 4616, 7299, 11010, 15983, 22476, 30771, 41174, 54015, 69648, 88451, 110826, 137199, 168020, 203763, 244926, 292031, 345624, 406275, 474578, 551151, 636636, 731699, 837030, 953343, 1081376, 1221891, 1375674, 1543535, 1726308
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 30 2004

Keywords

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=3, a(2)=26, a(3)=111, a(4)=324. - Harvey P. Dale, Apr 25 2015
From Elmo R. Oliveira, Aug 29 2025: (Start)
G.f.: x*(3 + 11*x + 11*x^2 - x^3)/(1-x)^5.
E.g.f.: x*(3 + 10*x + 7*x^2 + x^3)*exp(x). (End)
Showing 1-10 of 16 results. Next