cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A282050 Coefficients in q-expansion of (E_4^2 - E_2*E_6)/1008, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 66, 732, 4228, 15630, 48312, 117656, 270600, 533637, 1031580, 1771572, 3094896, 4826822, 7765296, 11441160, 17318416, 24137586, 35220042, 47045900, 66083640, 86124192, 116923752, 148035912, 198079200, 244218775, 318570252, 389021400, 497449568, 594823350
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

Comments

Multiplicative because A001160 is. - Andrew Howroyd, Jul 23 2018

Examples

			a(6) = 1^6*6^1 + 2^6*3^1 + 3^6*2^1 + 6^6*1^1 = 48312.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), this sequence (phi_{6, 1}), A282060 (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A145095 (-q*E'_6), A008410 (E_4^2 = E_8), A282096 (E_2*E_6).

Programs

  • Mathematica
    terms = 30;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E4[x]^2 - E2[x]*E6[x])/1008 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
    Table[n * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[x*Sum[k^6*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n * sigma(n, 5)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = A145095(n)/504 for n > 0.
G.f.: phi_{6, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A008410(n) - A282096(n))/1008. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^6 + p = A131472(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A001160(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(6) * n^7 / 7. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-6). (End)
G.f. Sum_{k>=1} k^6*x^(k-1)/(1 - x^k)^2. - Vaclav Kotesovec, Aug 01 2025

A106512 Array read by antidiagonals: a(n,k) = number of k-colorings of a circle of n nodes (n >= 1, k >= 1).

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 12, 6, 2, 0, 0, 20, 24, 18, 0, 0, 0, 30, 60, 84, 30, 2, 0, 0, 42, 120, 260, 240, 66, 0, 0, 0, 56, 210, 630, 1020, 732, 126, 2, 0, 0, 72, 336, 1302, 3120, 4100, 2184, 258, 0, 0, 0, 90, 504, 2408, 7770, 15630, 16380, 6564, 510, 2, 0, 0, 110
Offset: 1

Views

Author

Joshua Zucker, May 29 2005

Keywords

Comments

Note that we keep one edge in the circular graph even when there's only one node (so there are 0 colorings of one node with k colors).
Number of closed walks of length n on the complete graph K_{k}. - Andrew Howroyd, Mar 12 2017

Examples

			From _Andrew Howroyd_, Mar 12 2017: (Start)
Table begins:
  0 0   0     0      0       0        0        0         0 ...
  0 2   6    12     20      30       42       56        72 ...
  0 0   6    24     60     120      210      336       504 ...
  0 2  18    84    260     630     1302     2408      4104 ...
  0 0  30   240   1020    3120     7770    16800     32760 ...
  0 2  66   732   4100   15630    46662   117656    262152 ...
  0 0 126  2184  16380   78120   279930   823536   2097144 ...
  0 2 258  6564  65540  390630  1679622  5764808  16777224 ...
  0 0 510 19680 262140 1953120 10077690 40353600 134217720 ...
(End)
a(4,3) = 18 because there are three choices for the first node's color (call it 1) and then two choices for the second node's color (call it 2) and then the remaining two nodes can be 12, 13, or 32. So in total there are 3*2*3 = 18 ways. a(3,4) = 4*3*2 = 24 because the three nodes must be three distinct colors.
		

Crossrefs

Columns include A092297, A226493. Main diagonal is A118537.

Formula

a(n, k) = (k-1)^n + (-1)^n * (k-1).

Extensions

a(67) corrected by Andrew Howroyd, Mar 12 2017

A190578 a(n) = n^7 + n.

Original entry on oeis.org

0, 2, 130, 2190, 16388, 78130, 279942, 823550, 2097160, 4782978, 10000010, 19487182, 35831820, 62748530, 105413518, 170859390, 268435472, 410338690, 612220050, 893871758, 1280000020, 1801088562, 2494357910, 3404825470, 4586471448
Offset: 0

Views

Author

Keywords

Comments

a(n) = n^7 + n, A005843 for k=1, A002378 for k=2, A034262 for k=3, A091940 for k=4, A131471 for k=5, A131472 for k=6.

Crossrefs

Programs

  • Magma
    [n^7+n: n in [0..30]]; // Vincenzo Librandi, Sep 30 2011
  • Mathematica
    k=7; Table[n^k+n,{n,0,50}]

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Sep 30 2011
Showing 1-3 of 3 results.