cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A271209 a(n) = n^5 + n + 1.

Original entry on oeis.org

1, 3, 35, 247, 1029, 3131, 7783, 16815, 32777, 59059, 100011, 161063, 248845, 371307, 537839, 759391, 1048593, 1419875, 1889587, 2476119, 3200021, 4084123, 5153655, 6436367, 7962649, 9765651, 11881403, 14348935, 17210397, 20511179, 24300031, 28629183, 33554465
Offset: 0

Views

Author

Jaroslav Krizek, Apr 02 2016

Keywords

Comments

For n>1 these are odd composite numbers: all terms a(n) are divisible by number h(n) = GCD(n^5+n+1,(n+1)^5+n) = GCD(a(n), a(n+1)-2) = (n*(n+1)+1)*GCD(n*(n+1)-1, 5) where 1 < h(n) < a(n) for all n>1. Sequence of corresponding numbers h(n) for n>1: 35, 13, 21, 31, 43, 285, ... For example, a(7) = 16815 is divisible by number h(7) = (7*(7+1)+1)*GCD(7*(7+1)-1, 5) = 57*GCD(55, 5) = 57*5 = 285.
We name a set of k sequences IOPR_k(n) = {a_1(n) = a(n), a_2(n) = a(n) + 2, ..., a_k(n) = a(n) + 2*(k - 1)} as infinite nonprime k-lane road if a arithmetic function a(n) defined by arithmetic operations produces for all n > h (h = a small integer >= 0) odd terms such that all values a(n), a(n) + 2, ..., a(n) + 2*(k - 1) are composites. We say sequences a_1(n) = a(n), a_2(n) = a(n) + 2, ..., a_k(n) = a(n) + 2*(k - 1) are k-th lanes of set IOPR_k(n).
For example, sequence A016945(n) = 6*n + 3 = IOPR_1(n) for k=1.
This sequence a(n) is 2nd lane of set of sequences IOPR_2(n) = {a_1(n) = A271208(n) = a(n) - 2 = n^5 + n - 1, a_2(n) = a(n) = n^5 + n + 1}.
If p = prime > 2 of the form 3m - 1 from A003627 then sets of 2 sequences {n^p + n - 1, n^p + n + 1} = IOPR_2(n) for all p.
Also sets of 2 sequences {n^k + n - 1, n^k + n + 1} = IOPR_2(n) for all k>2 from A016789.
In general, if k>2 is number of the form 3m - 1 from A016789 then sequences a(n) = n^k + n - 1 and b(n) = a(n) + 2 = n^k + n + 1 produces for all n > 1 odd composite terms. The terms of sequence a(n) = n^k + n - 1 are divisible for all n > 1 by number h(n) = GCD(n^k+n-1,(n-1)^k+n) = GCD(a(n), a(n-1)+2) = (n*(n-1)+1)*GCD(n*(n-1)-1, k) where 1 < h(n) < a(n) for all n>1. The terms of sequence b(n) = a(n) + 2 = n^k + n + 1 are divisible for all n > 1 by number h(n) = GCD(n^k+n+1,(n+1)^k+n) = GCD(a(n), a(n+1)-2) = (n*(n+1)+1)*GCD(n*(n+1)-1, k) where 1 < h(n) < a(n) for all n>1.
Are there any sets of sequences IOPR_k(n) for k>2? For example, like set of sequences {A161945(n), A161945(n) + 2, A161945(n) + 4} is not an infinite nonprime 3-lane road because sequence A161945 is not defined by arithmetic operations.

Crossrefs

Programs

Formula

a(n) = A271208(n) + 2.
From Wesley Ivan Hurt, Apr 02 2016: (Start)
G.f.: (1-3*x+32*x^2+62*x^3+27*x^4+x^5) / (x-1)^6.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), n>5. (End)
a(n) = A131471(n) + 1. - Omar E. Pol, Apr 05 2016

A271208 a(n) = n^5 + n - 1.

Original entry on oeis.org

-1, 1, 33, 245, 1027, 3129, 7781, 16813, 32775, 59057, 100009, 161061, 248843, 371305, 537837, 759389, 1048591, 1419873, 1889585, 2476117, 3200019, 4084121, 5153653, 6436365, 7962647, 9765649, 11881401, 14348933, 17210395, 20511177, 24300029, 28629181, 33554463
Offset: 0

Views

Author

Jaroslav Krizek, Apr 02 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A271209(n) - 2.
From Wesley Ivan Hurt, Apr 02 2016: (Start)
G.f.: (-1 + 7*x + 12*x^2 + 82*x^3 + 17*x^4 + 3*x^5) / (x-1)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5)- a (n-6), n > 5. (End)
a(n) = A131471(n) - 1. - Omar E. Pol, Apr 05 2016

A190578 a(n) = n^7 + n.

Original entry on oeis.org

0, 2, 130, 2190, 16388, 78130, 279942, 823550, 2097160, 4782978, 10000010, 19487182, 35831820, 62748530, 105413518, 170859390, 268435472, 410338690, 612220050, 893871758, 1280000020, 1801088562, 2494357910, 3404825470, 4586471448
Offset: 0

Views

Author

Keywords

Comments

a(n) = n^7 + n, A005843 for k=1, A002378 for k=2, A034262 for k=3, A091940 for k=4, A131471 for k=5, A131472 for k=6.

Crossrefs

Programs

  • Magma
    [n^7+n: n in [0..30]]; // Vincenzo Librandi, Sep 30 2011
  • Mathematica
    k=7; Table[n^k+n,{n,0,50}]

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Sep 30 2011

A340129 a(n) is the number of solutions of the Diophantine equation x^2 + y^2 = z^5 + z, gcd(x, y, z) = 1, x <= y, where z = A008784(n).

Original entry on oeis.org

1, 1, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 2, 2, 16, 4, 4, 4, 2, 4, 2, 4, 4, 8, 8, 8, 4, 4, 4, 2, 8, 4, 16, 4, 16, 4, 2, 4, 16, 4, 4, 16, 4, 8, 8, 8, 4, 4, 8, 4, 8, 4, 4, 4, 16, 4, 4, 8, 2, 16, 2, 32, 2, 16, 4, 4, 2, 4, 8, 16, 4, 8, 4, 8, 4, 4, 8, 4, 16
Offset: 1

Views

Author

Bernard Schott, Jan 17 2021

Keywords

Comments

The idea of this sequence comes from the 6th problem of the 21st British Mathematical Olympiad in 1985 where it is asked to show that this equation has infinitely many solutions (see link Olympiads and reference Gardiner).
Indeed, this Diophantine equation x^2 + y^2 = z^5 + z with gcd(x, y, z) = 1 has solutions iff z is in A008784.
When z is in A008784, there exist (u, v), gcd(u, v) = 1 such that z = u^2 + v^2; then, (u*z^2-v)^2 + (u+v*z^2)^2 = z^5 + z. Hence, with x = min(u*z^2-v, u+v*z^2) and y = max(u*z^2-v, u+v*z^2), the equation x^2 + y^2 = z^5 + z is satisfied. So this equation has infinitely many solutions since it has at least one solution for each term of A008784.
For instance, for z = 10 we have:
with (u,v) = (1,3), then x = 1*10^2-3 = 97 and y = 1+3*10^2 = 301,
with (u,v) = (3,1), then x = 3+1*10^2 = 103 and y = 3*10^2-1 = 299,
so finally 97^2 + 301^2 = 103^2 + 299^2 = 10^5 + 10.
Note that some z, among them 10, have other solutions not of this form.

Examples

			For z = A008784(1) = 1, 1^2 + 1^2 = 1^5 + 1 is the only solution, so a(1) = 1.
For z = A008784(3) = 5, 23^2 + 51^2 = 27^2 + 49^2 = 5^5 + 5 so a(3) = 2.
For z = A008784(4) = 10, (97, 301, 10), (103, 299, 10), (119, 293, 10) and (163, 271, 10) are solutions, so a(4) = 4.
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 6, pp. 63 and 167-168 (1985).

Crossrefs

Programs

  • Mathematica
    f[n_] := Length @ Solve[x^2 + y^2 == n^5 + n && GCD @@ {x, y, n} == 1 && 0 <= x <= y, {x, y}, Integers]; f /@ Select[Range[500], IntegerExponent[#, 2] < 2 && AllTrue[FactorInteger[#][[;; , 1]], Mod[#1, 4] < 3 &] &] (* Amiram Eldar, Jan 22 2021 *)
  • PARI
    f(z) = {if (issquare(Mod(-1, z)), my(nb = 0, s = z^5+z, d, j); for (i=1, sqrtint(s), if (issquare(d = s - i^2), j = sqrtint(d); if ((j<=i) && gcd([i, j, z]) == 1, nb++););); nb;);}
    lista(nn) = {for (n=1, nn, if (issquare(Mod(-1, n)), print1(f(n), ", ")););} \\ Michel Marcus, Jan 20 2021

Extensions

More terms from Michel Marcus, Jan 20 2021

A363733 Array read by upwards antidiagonals. The family of polynomials generated by the divisibility matrix (A113704) evaluated over the nonnegative integers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 6, 3, 1, 0, 3, 10, 12, 4, 1, 0, 2, 22, 30, 20, 5, 1, 0, 4, 34, 93, 68, 30, 6, 1, 0, 2, 78, 246, 276, 130, 42, 7, 1, 0, 4, 130, 768, 1028, 655, 222, 56, 8, 1, 0, 3, 278, 2190, 4180, 3130, 1338, 350, 72, 9, 1
Offset: 0

Views

Author

Peter Luschny, Jun 27 2023

Keywords

Comments

The name expresses the 'row view' of the array. The 'column view' regards the array as the collection of the inverse Möbius transforms of the power sequences k^n = 0^n, 1^n, 2^n, .... (n >= 0). Viewed this way, the array is a generalization of the number of divisors sequence tau (A000005), to which it reduces in the case k = 1.
The array has offset (0, 0). It uses the usual definition of 'k divides n' as described in Apostol, rather than the shortened version, which restricts to values k > 0 as some programs do (but not SageMath). Such a restriction makes sense in the context of rational numbers but not in the case of natural numbers.

Examples

			Array A(n, k) starts:
  [0] 1, 1,   1,    1,     1,      1,       1,       1,        1, ... A000012
  [1] 0, 1,   2,    3,     4,      5,       6,       7,        8, ... A001477
  [2] 0, 2,   6,   12,    20,     30,      42,      56,       72, ... A002378
  [3] 0, 2,  10,   30,    68,    130,     222,     350,      520, ... A034262
  [4] 0, 3,  22,   93,   276,    655,    1338,    2457,     4168, ...
  [5] 0, 2,  34,  246,  1028,   3130,    7782,   16814,    32776, ... A131471
  [6] 0, 4,  78,  768,  4180,  15780,   46914,  118048,   262728, ...
  [7] 0, 2, 130, 2190, 16388,  78130,  279942,  823550,  2097160, ... A190578
  [8] 0, 4, 278, 6654, 65812, 391280, 1680954, 5767258, 16781384, ...
   A000005,A055895,A363913, ...                             A066108 (diagonal)
.
Triangle T(n, k) starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 1,   1;
  [3] 0, 2,   2,   1;
  [4] 0, 2,   6,   3,    1;
  [5] 0, 3,  10,  12,    4,   1;
  [6] 0, 2,  22,  30,   20,   5,   1;
  [7] 0, 4,  34,  93,   68,  30,   6,  1;
  [8] 0, 2,  78, 246,  276, 130,  42,  7, 1;
  [9] 0, 4, 130, 768, 1028, 655, 222, 56, 8, 1;
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer 1976, p. 14.

Crossrefs

Cf. A113704 (in compact form A113705), A000005 (column 1), A055895 (column 2), A363913 (column 3), A001477 (row 1), A002378 (row 2), A034262 (row 3), A131471 (row 5), A190578 (row 7), A363912 (row sums), A066108 (main diagonal of array).

Programs

  • Maple
    divides := (k, n) -> ifelse(k = n or (k > 0 and irem(n, k) = 0), 1, 0):
    A := (n, k) -> local j; add(divides(j, n) * k^j, j = 0 ..n):
    for n from 0 to 8 do seq(A(n, k), k = 0..8) od;
    # If we introduce the 'inverse Möbius transform' InvMoebius acting on s ...
    InvMoebius := (s, n) -> local j; add(divides(j, n) * s(j), j = 0 ..n):
    # ... the transposed array is given by applying InvMoebius to the powers r^m:
    seq(lprint(seq(InvMoebius(m -> r^m, n), n = 0..8)), r = 0..8);
    # For instance we see that the number of divisors is the inverse
    # Moebius transform of the constant sequence s = 1.
  • SageMath
    def A(n, k): return sum(j.divides(n) * k^j for j in (0..n))
    for n in srange(9): print([A(n, k) for k in (0..8)])

Formula

A(n, k) = Sum_{j=0..n} divides(j, n) * k^j, where divides(k, n) <-> [k = n or (k > 0 and n mod k = 0)], and '[ ]' denotes the Iverson bracket.
The columns are the inverse Möbius transforms of the powers x^n, x >= 0.
Showing 1-5 of 5 results.