cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A131471 a(n) = n^5+n.

Original entry on oeis.org

0, 2, 34, 246, 1028, 3130, 7782, 16814, 32776, 59058, 100010, 161062, 248844, 371306, 537838, 759390, 1048592, 1419874, 1889586, 2476118, 3200020, 4084122, 5153654, 6436366, 7962648, 9765650, 11881402, 14348934, 17210396, 20511178, 24300030, 28629182, 33554464
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

Formula

G.f.: 2*x*(1+11*x+36*x^2+11*x^3+x^4)/(-1+x)^6. - R. J. Mathar, Nov 14 2007
a(n) = A271208(n) + 1 = A271209(n) - 1. - Paolo Xausa, Nov 03 2024

A271208 a(n) = n^5 + n - 1.

Original entry on oeis.org

-1, 1, 33, 245, 1027, 3129, 7781, 16813, 32775, 59057, 100009, 161061, 248843, 371305, 537837, 759389, 1048591, 1419873, 1889585, 2476117, 3200019, 4084121, 5153653, 6436365, 7962647, 9765649, 11881401, 14348933, 17210395, 20511177, 24300029, 28629181, 33554463
Offset: 0

Views

Author

Jaroslav Krizek, Apr 02 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A271209(n) - 2.
From Wesley Ivan Hurt, Apr 02 2016: (Start)
G.f.: (-1 + 7*x + 12*x^2 + 82*x^3 + 17*x^4 + 3*x^5) / (x-1)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5)- a (n-6), n > 5. (End)
a(n) = A131471(n) - 1. - Omar E. Pol, Apr 05 2016

A272162 a(n) = n^5-n+1.

Original entry on oeis.org

1, 1, 31, 241, 1021, 3121, 7771, 16801, 32761, 59041, 99991, 161041, 248821, 371281, 537811, 759361, 1048561, 1419841, 1889551, 2476081, 3199981, 4084081, 5153611, 6436321, 7962601, 9765601, 11881351, 14348881, 17210341, 20511121, 24299971, 28629121, 33554401, 39135361, 45435391
Offset: 0

Views

Author

Benjamin Przybocki, Apr 23 2016

Keywords

Comments

This is the simplest polynomial whose roots cannot be expressed in terms of radicals.

Crossrefs

Programs

Formula

G.f.: ( 1-5*x+40*x^2+50*x^3+35*x^4-x^5 ) / (x-1)^6. - R. J. Mathar, Apr 26 2016
Showing 1-3 of 3 results.