cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A033428 a(n) = 3*n^2.

Original entry on oeis.org

0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348
Offset: 0

Views

Author

Keywords

Comments

The number of edges of a complete tripartite graph of order 3n, K_n,n,n. - Roberto E. Martinez II, Oct 18 2001
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0; then a(n) is the sequence found by reading the line from 0 in the direction 0,3,.... The spiral begins:
.
33--32--31--30
/ \
34 16--15--14 29
/ / \ \
35 17 5---4 13 28
/ / / \ \ \
36 18 6 0---3--12--27--48-->
/ / / / / / / /
37 19 7 1---2 11 26 47
\ \ \ / / /
38 20 8---9--10 25 46
\ \ / /
39 21--22--23--24 45
\ /
40--41--42--43--44
(End)
Number of edges of the complete bipartite graph of order 4n, K_n,3n. - Roberto E. Martinez II, Jan 07 2002
Also the number of partitions of 6n + 3 into at most 3 parts. - R. K. Guy, Oct 23 2003
Also the number of partitions of 6n into exactly 3 parts. - Colin Barker, Mar 23 2015
Numbers n such that the imaginary quadratic field Q[sqrt(-n)] has six units. - Marc LeBrun, Apr 12 2006
The denominators of Hoehn's sequence (recalled by G. L. Honaker, Jr.) and the numerators of that sequence reversed. The sequence is 1/3, (1+3)/(5+7), (1+3+5)/(7+9+11), (1+3+5+7)/(9+11+13+15), ...; reduced to 1/3, 4/12, 9/27, 16/48, ... . For the reversal, the reduction is 3/1, 12/4, 27/9, 48/16, ... . - Enoch Haga, Oct 05 2007
Right edge of tables in A200737 and A200741: A200737(n, A000292(n)) = A200741(n, A100440(n)) = a(n). - Reinhard Zumkeller, Nov 21 2011
The Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1<=i, j<=n, i/=j} (= the complete bipartite graph K(n,n) with horizontal edges removed). Example: a(3)=27 because G(3) is the cycle C(6) and 6*1 + 6*2 + 3*3 = 27. The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013
From Michel Lagneau, May 04 2015: (Start)
Integer area A of equilateral triangles whose side lengths are in the commutative ring Z[3^(1/4)] = {a + b*3^(1/4) + c*3^(1/2) + d*3^(3/4), a,b,c and d in Z}.
The area of an equilateral triangle of side length k is given by A = k^2*sqrt(3)/4. In the ring Z[3^(1/4)], if k = q*3^(1/4), then A = 3*q^2/4 is an integer if q is even. Example: 27 is in the sequence because the area of the triangle (6*3^(1/4), 6*3^(1/4), 6*3^(1/4)) is 27. (End)
a(n) is 2*sqrt(3) times the area of a 30-60-90 triangle with short side n. Also, 3 times the area of an n X n square. - Wesley Ivan Hurt, Apr 06 2016
Consider the hexagonal tiling of the plane. Extract any four hexagons adjacent by edge. This can be done in three ways. Fold the four hexagons so that all opposite faces occupy parallel planes. For all parallel projections of the resulting object, at least two correspond to area a(n) for side length of n of the original hexagons. - Torlach Rush, Aug 17 2022
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(3*n))/(1 + q^(3*n)) = ( Sum_{n in Z} q^(n*(3*n+1)/2) ) / ( Product_{n >= 1} 1 + q^n ) = 1 - 2*q^3 + 2*q^12 - 2*q^27 + 2*q^48 - 2*q^75 + - .... - Peter Bala, Dec 30 2024

Examples

			From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
.                                              o
.                                             o o
.                                            o   o
.                          o                o  o  o
.                         o o              o  o o  o
.                        o   o            o  o   o  o
.           o           o  o  o          o  o  o  o  o
.          o o         o  o o  o        o  o  o o  o  o
.         o   o       o  o   o  o      o  o  o   o  o  o
.  o     o  o  o     o  o  o  o  o    o  o  o  o  o  o  o
. o o   o  o o  o   o  o  o o  o  o  o  o  o  o o  o  o  o
. n=1      n=2            n=3                 n=4
(End)
		

Crossrefs

Programs

  • Haskell
    a033428 = (* 3) . (^ 2)
    a033428_list = 0 : 3 : 12 : zipWith (+) a033428_list
       (map (* 3) $ tail $ zipWith (-) (tail a033428_list) a033428_list)
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Magma
    [3*n^2: n in [0..50]]; // Vincenzo Librandi, May 18 2015
    
  • Maple
    seq(3*n^2, n=0..46); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    3 Range[0, 50]^2
    LinearRecurrence[{3, -3, 1}, {0, 3, 12}, 50] (* Harvey P. Dale, Feb 16 2013 *)
  • Maxima
    makelist(3*n^2,n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=3*n^2
    
  • Python
    def a(n): return 3 * (n**2) # Torlach Rush, Aug 25 2022

Formula

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
G.f.: 3*x*(1+x)/(1-x)^3. - R. J. Mathar, Sep 09 2008
Main diagonal of triangle in A132111: a(n) = A132111(n,n). - Reinhard Zumkeller, Aug 10 2007
A214295(a(n)) = -1. - Reinhard Zumkeller, Jul 12 2012
a(n) = A215631(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A174709(6n+2). - Philippe Deléham, Mar 26 2013
a(n) = a(n-1) + 6*n - 3, with a(0)=0. - Jean-Bernard François, Oct 04 2013
E.g.f.: 3*x*(1 + x)*exp(x). - Ilya Gutkovskiy, Apr 13 2016
a(n) = t(3*n) - 3*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): A000217(3*n) - 3*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = A000326(n) + A005449(n). - Bruce J. Nicholson, Jan 10 2020
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 (A086463).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36. (End)
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(3)*sinh(Pi/sqrt(3))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(3)*sin(Pi/sqrt(3))/Pi. (End)
a(n) = A003215(n) - A016777(n). - Leo Tavares, Apr 29 2023

Extensions

Better description from N. J. A. Sloane, May 15 1998

A219069 Triangle read by rows: T(n,k) = n^4 + (n*k)^2 + k^4, 1 <= k <= n.

Original entry on oeis.org

3, 21, 48, 91, 133, 243, 273, 336, 481, 768, 651, 741, 931, 1281, 1875, 1333, 1456, 1701, 2128, 2821, 3888, 2451, 2613, 2923, 3441, 4251, 5461, 7203, 4161, 4368, 4753, 5376, 6321, 7696, 9633, 12288, 6643, 6901, 7371, 8113, 9211, 10773, 12931, 15841, 19683
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Comments

Entry 17a from July 9, 1796 in Gauss's Mathematical Diary: "Summa trium quadratorum continue proportionalium numquam primus esse potest: conspicuum exemplum novimus et quod congruum videtur. Confidamus." Paul Bachmann explains that this note is based on Gauss's discovery of this factorization: n^4 + n^2*k^2 + k^4 = (n^2 + n*k + k^2) * (n^2 - n*k + k^2).

Examples

			The triangle begins:
.  1:      3
.  2:     21    48
.  3:     91   133   243
.  4:    273   336   481   768
.  5:    651   741   931  1281  1875
.  6:   1333  1456  1701  2128  2821  3888
.  7:   2451  2613  2923  3441  4251  5461  7203
.  8:   4161  4368  4753  5376  6321  7696  9633 12288
.  9:   6643  6901  7371  8113  9211 10773 12931 15841 19683
. 10:  10101 10416 10981 11856 13125 14896 17301 20496 24661 30000
. 11:  14763 15141 15811 16833 18291 20293 22971 26481 31003 36741 43923
		

References

  • Carl Friedrich Gauss (Hans Wussing, ed.), Mathematisches Tagebuch 1796-1814, Ostwalds Klassiker der Exakten Wissenschaften, Leipzig (1976, 1979), pp. 43, 63, 90.

Crossrefs

Cf. A059826 (left edge), A219056 (right edge), A219070 (row sums).
Cf. A239426 (central terms).
Cf. A243201 (diagonal (n + 1, n)). - Mathew Englander, Jun 03 2014

Programs

  • Haskell
    a219069 n k = a219069_tabl !! (n-1) !! (k-1)
    a219069_row n = a219069_tabl !! n
    a219069_tabl = zipWith (zipWith (*)) a215630_tabl a215631_tabl
  • Mathematica
    Table[n^4+(n*k)^2+k^4,{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 05 2020 *)

Formula

T(n,k) = A215630(n,k) * A215631(n,k), 1 <= k <= n.

A244730 a(n) = 2*n^4.

Original entry on oeis.org

0, 2, 32, 162, 512, 1250, 2592, 4802, 8192, 13122, 20000, 29282, 41472, 57122, 76832, 101250, 131072, 167042, 209952, 260642, 320000, 388962, 468512, 559682, 663552, 781250, 913952, 1062882, 1229312, 1414562, 1620000, 1847042, 2097152, 2371842, 2672672
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Programs

  • Magma
    [2*n^4: n in [0..40]];
    
  • Magma
    I:=[0,2,32,162, 512]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
  • Mathematica
    Table[2 n^4, {n, 0, 40}] (* or *) CoefficientList[Series[2(x + 11 x^2 + 11 x^3 + x^4)/(1 - x)^5, {x, 0, 40}], x]
    LinearRecurrence[{5,-10,10,-5,1},{0,2,32,162,512},40] (* Harvey P. Dale, Jun 17 2022 *)

Formula

G.f.: 2*(x + 11*x^2 + 11*x^3 + x^4)/(1 - x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
a(n) = (A082044(n) + A099761(n+1)-2)/2. - Bruce J. Nicholson, Jun 12 2017

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...
Showing 1-4 of 4 results.