A219183 Numbers n such that n^1+n+1, n^2+n+1, n^3+n+1 and n^4+n+1 are all semiprime.
84, 92, 129, 132, 182, 185, 195, 201, 234, 255, 264, 327, 333, 356, 407, 444, 449, 528, 705, 732, 794, 795, 881, 980, 1079, 1095, 1115, 1126, 1241, 1253, 1302, 1431, 1479, 1496, 1574, 1772, 1781, 1799, 1805, 1874, 1922, 2052, 2067, 2316, 2352, 2381, 2420
Offset: 1
Keywords
Examples
a(1) = 84 because 84^4 + 84 + 1 = 49787221 = 11 * 4526111; 84^3 + 84 + 1 = 592789 = 29 * 20441; 84^2 + 84 + 1 = 7141 = 37 * 193; 84^1 + 84 + 1 = 169 = 13^2. 3^4+3+1 = 85 = 5*17 is semiprime, but 3^3+3+1 = 321 is prime, so 3 is not in this sequence. 8^4+8+1 = 4105 = 5 * 821 is semiprime, but 8^3+8+1 = 521 is prime, so 8 is not in this sequence. 20^4+20+1 = 160021 = 17 * 9413 is semiprime, and 20^3+20+1 = 8021 = 13 * 617 is semiprime, but 20^2+20+1 = 421 is prime, so 20 is not in this sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Magma
s:=func
; [k : k in [2..2500]| forall{i:i in [1,2,3,4]| s(k^i+k+1)}]; // Marius A. Burtea, Feb 11 2020 -
PARI
is(n)=vector(4,i,bigomega(n^i+n+1))==[2,2,2,2] \\ Charles R Greathouse IV, Nov 13 2012
Comments