cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219196 A subsequence of the denominators of the Bernoulli numbers: a(n) = A027642(A131577(n)).

Original entry on oeis.org

1, 2, 6, 30, 30, 510, 510, 510, 510, 131070, 131070, 131070, 131070, 131070, 131070, 131070, 131070, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590
Offset: 0

Views

Author

Paul Curtz, Nov 14 2012

Keywords

Comments

Conjecture: a(15) = a(16) = 131070, a(17) through a(32) = 8589934590.
Number of different terms: 1, 1, 1, 2, 4, ... = abs(A141531)?
Factorization of terms from 2:
2 = 2
6 = 2*3
30 = 2*3*5
510 = 2*3*5*17
131070 = 2*3*5*17*257
8589934590 = 2*3*5*17*257*65537.
Note that all factors shown are 2 or Fermat numbers (see A092506, A019434, A000215).
Empirical: using the von Staudt-Clausen theorem, terms a(17) through a(4215) are all 8589934590. - Simon Plouffe, Sep 20 2015
Using the von Staudt-Clausen theorem, a(n) is the product of 2 and all Fermat primes <= 2^(n-1)+1: see A019434. The only known Fermat primes are 3,5,17,257,65537; it is known that there are no others < 2^(2^33)+1, so that a(n) = 8589934590 for n <= 2^33 = 8589934592. - Robert Israel, Sep 21 2015

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Times @@ Select[ Divisors[2^(n-1)] + 1, PrimeQ]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 07 2012 *)
  • PARI
    a(n) = denominator(bernfrac(1<Michel Marcus, Aug 14 2013

Extensions

Extended up to a(20) by Jean-François Alcover, Dec 07 2012
More terms from Michel Marcus, Sep 27 2015