cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219197 Self-convolution equals A199033.

Original entry on oeis.org

1, 2, 9, 46, 253, 1452, 8570, 51594, 315225, 1948010, 12147881, 76316508, 482392198, 3064987460, 19560379470, 125309993974, 805458510441, 5192500350906, 33561539356277, 217429403317006, 1411572472199649, 9181398851046632, 59821825063376124, 390382132833183204
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2012

Keywords

Comments

Conjecture: a(n) is never congruent to 3 modulo 4.

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 46*x^3 + 253*x^4 + 1452*x^5 +...
where A(x)^2 = 1 + 4*x + 22*x^2 + 128*x^3 + 771*x^4 + 4744*x^5 +...+ A199033(n)*x^n +...
Also, the g.f. A(x) satisfies: A(x) = G(x) * F(x*G(x)^2) where
F(x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 141*x^6 +...+ A002426(n)*x^n +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...+ A001764(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    A002426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}]; Table[Sum[A002426[k]*Binomial[3*n - k + 1, n - k]*(2*k + 1)/(3*n - k + 1), {k, 0, n}], {n, 0, 50} ] (* G. C. Greubel, Mar 06 2017 *)
  • PARI
    {a(n)=local(A2=sum(m=0, n, sum(k=0, m, binomial(m+k+1, m-k)*binomial(2*m-k+1, k))*x^m+x*O(x^n))); polcoeff(A2^(1/2), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(G/sqrt(1-2*x*G^2-3*x^2*G^4), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {A002426(n)=sum(k=0, n\2, binomial(n, 2*k)*binomial(2*k, k))}
    {a(n)=if(n==0, 1, sum(k=0, n, A002426(k)*binomial(3*n-k+1, n-k)*(2*k+1)/(3*n-k+1)))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {A097893(n)=sum(m=0, n, sum(k=0, m\2, binomial(m, 2*k)*binomial(2*k, k)))}
    {a(n)=if(n==0, 1, sum(k=0, n, A097893(k)*binomial(3*n-k, n-k)*2*k/(3*n-k)))}
    for(n=0, 30, print1(a(n), ", "))

Formula

Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} C(n+k+1,n-k)*C(2*n-k+1,k) = A199033(n).
G.f.: A(x) = G(x) / sqrt(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764.
G.f.: A(x) = Sum_{n>=0} A002426(n) * x^n * G(x)^(2*n+1), where A002426 are the central trinomial coefficients and G(x) = 1 + x*G(x)^3 = g.f. of A001764.
a(n) = Sum_{k=0..n} A002426(k) * C(3*n-k+1,n-k) * (2*k+1)/(3*n-k+1) for n>0, where A002426 are the central trinomial coefficients.
From Vaclav Kotesovec, Oct 05 2020: (Start)
Recurrence: 32*(n-1)*n*(2*n + 1)*(49*n^2 - 210*n + 222)*a(n) = 4*(n-1)*(10388*n^4 - 55104*n^3 + 96925*n^2 - 64446*n + 15006)*a(n-1) - 6*(22050*n^5 - 173439*n^4 + 536588*n^3 - 814340*n^2 + 604331*n - 174702)*a(n-2) - 81*(n-2)*(3*n - 7)*(3*n - 5)*(49*n^2 - 112*n + 61)*a(n-3).
a(n) ~ 3^(3*n + 7/4) / (Gamma(1/4) * n^(3/4) * 2^(2*n + 5/2)). (End)