cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A183161 Self-convolution equals A183160.

Original entry on oeis.org

1, 1, 5, 26, 145, 841, 5006, 30350, 186537, 1158685, 7258145, 45779420, 290399030, 1851032314, 11847434810, 76100034106, 490343021881, 3168174174105, 20520045125681, 133197288251330, 866293102078525, 5644234561103785
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2010

Keywords

Comments

Conjecture: a(n) is never congruent to 3 modulo 4; see A218622. - Paul D. Hanna, Nov 03 2012

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 145*x^4 + 841*x^5 + 5006*x^6 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 62*x^3 + 367*x^4 + 2232*x^5 + 13820*x^6 + 86662*x^7 +...+ A183160(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    a(n)=local(A2=sum(m=0,n,sum(k=0,m,binomial(m+k,m-k)*binomial(2*m-k,k))*x^m+x*O(x^n)));polcoeff(A2^(1/2),n)
    
  • PARI
    a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/sqrt(1-2*x*G^2-3*x^2*G^4), n) \\ Paul D. Hanna, Nov 03 2012
    
  • PARI
    A002426(n)=sum(k=0,n\2,binomial(n,2*k)*binomial(2*k,k))
    {a(n)=if(n==0,1,sum(k=0,n,A002426(k)*binomial(3*n-k,n-k)*2*k/(3*n-k)))} \\ Paul D. Hanna, Nov 04 2012
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/sqrt(1+3*x*G-5*x*G^2), n)
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2013

Formula

Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} C(n+k,n-k)*C(2*n-k,k) = A183160(n).
G.f.: A(x) = 1/sqrt(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 03 2012
G.f.: A(x) = Sum_{n>=0} A002426(n) * x^n * G(x)^(2*n), where A002426 are the central trinomial coefficients and G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 03 2012
a(n) = Sum_{k=0..n} A002426(k) * C(3*n-k,n-k) * 2*k/(3*n-k) for n>0, where A002426 are the central trinomial coefficients: A002426(n) = Sum_{k=0..[n/2]} C(n,2*k)*C(2*k,k). - Paul D. Hanna, Nov 04 2012
G.f.: A(x) = 1/sqrt(1 + 3*x*G(x) - 5*x*G(x)^2), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Jun 16 2013
From Vaclav Kotesovec, Oct 05 2020: (Start)
Recurrence: 32*(n-1)*n*(2*n - 1)*(294*n^2 - 1253*n + 1310)*a(n) = 4*(n-1)*(62328*n^4 - 391468*n^3 + 870242*n^2 - 806673*n + 264534)*a(n-1) - 6*(132300*n^5 - 1169784*n^4 + 4019115*n^3 - 6676447*n^2 + 5328996*n - 1620540)*a(n-2) - 81*(n-2)*(3*n - 8)*(3*n - 7)*(294*n^2 - 665*n + 351)*a(n-3).
a(n) ~ 3^(3*n + 3/4) / (Gamma(1/4) * n^(3/4) * 2^(2*n + 3/2)). (End)

A199033 Number of ways to place n non-attacking bishops on a 2 X 2n board.

Original entry on oeis.org

1, 4, 22, 128, 771, 4744, 29618, 186880, 1188679, 7608764, 48953224, 316283264, 2050706932, 13336273528, 86953633242, 568221290496, 3720529001823, 24403423540348, 160314652983158, 1054635453261568, 6946703172803003, 45809043607167328, 302395650703501688
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 02 2011

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(2*n-j+1,j)*Binomial(n+j+1,n-j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    Table[Sum[Binomial[2n-j+1,j]*Binomial[n+j+1,n-j],{j,0,n}],{n,0,25}]
  • Maxima
    A199033(n):=sum(binomial(n+k+1, n-k)*binomial(2*n-k+1,k),k,0,n)$ makelist(A199033(n),n,0,22); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n+k+1, n-k)*binomial(2*n-k+1, k))}
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(G^2/(1-2*x*G^2-3*x^2*G^4), n)} \\ Paul D. Hanna, Nov 14 2012
    for(n=0,25,print1(a(n),", "))
    
  • Sage
    [sum(binomial(2*n-j+1,j)*binomial(n+j+1,n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 19 2019

Formula

Recurrence: (112*n^4 + 968*n^3 + 3048*n^2 + 4136*n + 2040)*a(n+2) = (728*n^4 + 5914*n^3 + 17550*n^2 + 22510*n + 10530)*a(n+1) + (189*n^4 + 1539*n^3 + 4578*n^2 + 5886*n + 2760)*a(n). - Vaclav Kotesovec, Oct 30 2011
a(n) = Sum_{j=0..n} (binomial(2n-j+1,j)*binomial(n+j+1,n-j)).
a(n) ~ 3^(3n+4)/2^(2n+5)/sqrt(3*Pi*n).
Self-convolution of A219197. - Paul D. Hanna, Nov 14 2012
G.f.: A(x) = G(x)^2 / (1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 14 2012
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^(2*n+2)). - Ilya Gutkovskiy, Oct 25 2017

Extensions

Offset changed to 0 and a(0)=1 added by Paul D. Hanna, Nov 14 2012
Showing 1-2 of 2 results.