A219259 Numbers k such that 25*k+1 is a square.
0, 23, 27, 96, 104, 219, 231, 392, 408, 615, 635, 888, 912, 1211, 1239, 1584, 1616, 2007, 2043, 2480, 2520, 3003, 3047, 3576, 3624, 4199, 4251, 4872, 4928, 5595, 5655, 6368, 6432, 7191, 7259, 8064, 8136, 8987, 9063, 9960, 10040, 10983, 11067, 12056, 12144
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[n: n in [0..13000] | IsSquare(25*n+1)];
-
Magma
I:=[0,23,27,96,104]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
Maple
A219259:=proc(q) local n; for n from 1 to q do if type(sqrt(25*n+1), integer) then print(n); fi; od; end: A219259(1000); # Paolo P. Lava, Feb 19 2013
-
Mathematica
Select[Range[0, 13000], IntegerQ[Sqrt[25 # + 1]] &] CoefficientList[Series[x (23 + 4 x + 23 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
Formula
G.f.: x^2*(23 + 4*x + 23*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (50*n*(n-1) + 21*(-1)^n*(2*n - 1) + 5)/8 + 2.
Sum_{n>=2} 1/a(n) = 25/4 - cot(2*Pi/25)*Pi/2. - Amiram Eldar, Mar 17 2022
Comments