A219312 Composition of the binomial transform of Fibonacci numbers and the Catalan transform of Fibonacci numbers.
0, 1, 4, 15, 59, 243, 1034, 4501, 19920, 89281, 404184, 1844789, 8477571, 39183625, 182010366, 849115811, 3976405347, 18684473203, 88060677880, 416162484693, 1971567963673, 9361218368921, 44539107835094, 212308063827055, 1013779444844754, 4848597239921803
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, A Catalan transform and related transformations on integer sequences, pp. 20-22.
Crossrefs
Cf. A000045.
Programs
-
Mathematica
CoefficientList[Series[(Sqrt[5*x-1] - Sqrt[x-1])/(2*((x-1)*Sqrt[5*x-1] - x*Sqrt[x-1])), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 19 2013 *)
-
PARI
Vec((sqrt(5*x-1) - sqrt(x-1))/(2*((x-1)*sqrt(5*x-1) - x*sqrt(x-1))) + O(x^25)) \\ G. C. Greubel, Jan 28 2017
Formula
G.f.: (sqrt(5*x-1) - sqrt(x-1))/(2*((x-1)*sqrt(5*x-1) - x*sqrt(x-1))).
a(n) ~ 5^(n+5/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 19 2013
D-finite with recurrence n*a(n) +4*(-3*n+2)*a(n-1) +(45*n-58)*a(n-2) +2*(-27*n+46)*a(n-3) +20*(n-2)*a(n-4)=0. - R. J. Mathar, Nov 22 2024