cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219312 Composition of the binomial transform of Fibonacci numbers and the Catalan transform of Fibonacci numbers.

Original entry on oeis.org

0, 1, 4, 15, 59, 243, 1034, 4501, 19920, 89281, 404184, 1844789, 8477571, 39183625, 182010366, 849115811, 3976405347, 18684473203, 88060677880, 416162484693, 1971567963673, 9361218368921, 44539107835094, 212308063827055, 1013779444844754, 4848597239921803
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 17 2012

Keywords

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[5*x-1] - Sqrt[x-1])/(2*((x-1)*Sqrt[5*x-1] - x*Sqrt[x-1])), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 19 2013 *)
  • PARI
    Vec((sqrt(5*x-1) - sqrt(x-1))/(2*((x-1)*sqrt(5*x-1) - x*sqrt(x-1))) + O(x^25)) \\ G. C. Greubel, Jan 28 2017

Formula

G.f.: (sqrt(5*x-1) - sqrt(x-1))/(2*((x-1)*sqrt(5*x-1) - x*sqrt(x-1))).
a(n) ~ 5^(n+5/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 19 2013
D-finite with recurrence n*a(n) +4*(-3*n+2)*a(n-1) +(45*n-58)*a(n-2) +2*(-27*n+46)*a(n-3) +20*(n-2)*a(n-4)=0. - R. J. Mathar, Nov 22 2024