cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219314 Composition of the inverse binomial transform of Fibonacci numbers and the Catalan transform of Fibonacci numbers.

Original entry on oeis.org

0, 1, 0, 3, 3, 13, 26, 77, 192, 529, 1412, 3873, 10603, 29315, 81318, 226763, 634627, 1782637, 5022840, 14193457, 40211105, 114191159, 324981030, 926720807, 2647513282, 7576475383, 21716189676, 62336237007, 179182653117, 515717424109, 1486119467026
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 17 2012

Keywords

Crossrefs

Formula

G.f.: ((1+2*x)*sqrt(1-2*x-3*x^2) - 1 + x + 2*x^2)/(2*(1+x)*(1-2*x-4*x^2)).
Asymptotics: a(n) ~ 3^(n+2)*5/(8*sqrt(3*Pi*n^3)). - Fung Lam, Apr 07 2014
Conjecture: n*a(n) -2*n*a(n-1) +11*(-n+2)*a(n-2) +4*(2*n-5)*a(n-3) +8*(5*n-17)*a(n-4) +24*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 14 2016
Conjecture: n*(5*n-7)*a(n) -4*(5*n^2-12*n+6)*a(n-1) -(15*n^2-11*n-30) *a(n-2) +2*(35*n^2-119*n+66)*a(n-3) +12*(n-3)*(5*n2)*a(n-4)=0. - R. J. Mathar, Jun 14 2016