A219324 Positive integers n that are equal to the determinant of the circulant matrix formed by the decimal digits of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 247, 370, 378, 407, 481, 518, 592, 629, 1360, 3075, 26027, 26933, 45018, 69781, 80487, 154791, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 11955168, 80651025, 95738203, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160
Offset: 1
Examples
| 2 4 7 | 247 = det | 7 2 4 | | 4 7 2 |
Links
- Giovanni Resta, Table of n, a(n) for n = 1..57 (first 47 terms from Robert G. Wilson v)
- Max Alekseyev, Illustration for a(40) = 456790123
- N. I. Belukhov, Solution to Problem 14.7 (in Russian), Matematicheskoe Prosveshchenie 15 (2011), pp. 241-244.
- Wikipedia, Circulant matrix
Crossrefs
Programs
-
Mathematica
f[n_] := Det[ NestList[ RotateRight@# &, IntegerDigits@ n, Floor[ Log10[n] + 1] - 1]]; k = 1; lst = {}; While[k < 1120000000, a = f@ k; If[a == k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Nov 20 2012 *) Select[Range[53*10^5],Det[Table[RotateRight[IntegerDigits[#],d],{d,0,IntegerLength[ #]-1}]]==#&] (* The program generates the first 34 terms of the sequence. To generate more, increase the Range constant, but the program will take a long time to run. *) (* Harvey P. Dale, Jul 05 2021 *)
-
PARI
{ isA219324(n) = local(d,m,r); d=eval(Vec(Str(n))); m=#d; r=Mod(x,polcyclo(m)); prod(j=1,m,sum(i=1,m,d[i]*r^((i-1)*j)))==n }
-
Python
from sympy import Matrix A219324_list = [] for n in range(1,10**4): s = [int(d) for d in str(n)] m = len(s) if n == Matrix(m, m, lambda i, j: s[(i-j) % m]).det(): A219324_list.append(n) # Chai Wah Wu, Oct 18 2021
Comments