cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A219327 Positive integers k that are equal to the absolute value of the determinant of the circulant matrix formed by the decimal digits of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 48, 247, 370, 378, 407, 481, 518, 592, 629, 1360, 1547, 3075, 26027, 26933, 45018, 69781, 80487, 123823, 154791, 289835, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 11955168, 23203827, 80651025, 95738203
Offset: 1

Views

Author

Max Alekseyev, Nov 17 2012

Keywords

Comments

Contains A219324 and A219326 as subsequences.
Equal to the sequence defined by replacing circulant matrices with left circulant matrices. - Chai Wah Wu, Oct 18 2021

Crossrefs

A219324, the main entry for this sequence, provides references and further details.
Cf. A219326.

Programs

  • Python
    from sympy import Matrix
    A219327_list = []
    for n in range(1,10**6):
        s = [int(d) for d in str(n)]
        m = len(s)
        if n == abs(Matrix(m, m, lambda i, j: s[(i-j) % m]).det()):
            A219327_list.append(n) # Chai Wah Wu, Oct 18 2021

Extensions

a(53)-a(63) from Max Alekseyev, Feb 15 2013

A219325 Positive integers n that are equal to the determinant of the circulant matrix formed by the binary digits of n.

Original entry on oeis.org

1, 17298, 25947, 100990, 106090, 2718340, 36680364, 34505916416
Offset: 1

Views

Author

Max Alekseyev, Nov 17 2012

Keywords

Examples

			Binary digits of 17298 are [1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0]. The 15 X 15 circulant matrix formed by their circular right rotations has determinant equal to 17298.
		

Crossrefs

Cf. A219324 (decimal version) provides references and more details.

Programs

  • Mathematica
    dcmQ[n_]:=Module[{idn2=IntegerDigits[n,2]},Det[Table[RotateRight[idn2,k],{k,Length[ idn2]}]] == n]; Select[Range[3*10^6],dcmQ] (* This program generates the first 6 terms of the sequence. To generate a(7) and a(8), increase the Range constant to 3451*10^7, but the program will take a long time to run. *) (* Harvey P. Dale, Jul 30 2019 *)

Extensions

a(7) from Hans Havermann and Emmanuel Vantieghem, Nov 19 2012
a(8) from Giovanni Resta, Dec 14 2012

A219326 Positive integers m that are equal to the determinant of the circulant matrix formed by the decimal digits of m in reverse order.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 48, 247, 370, 378, 407, 481, 518, 592, 629, 1547, 26027, 26933, 45018, 69781, 80487, 123823, 289835, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 23203827
Offset: 1

Views

Author

Max Alekseyev, Nov 17 2012

Keywords

Comments

Terms with odd number of digits are the same as in A219324.

Examples

			           | 7 4 5 1 |
1547 = det | 1 7 4 5 |
           | 5 1 7 4 |
           | 4 5 1 7 |
		

Crossrefs

A219324 is the main entry for this sequence, provides references and further details.

Programs

  • Python
    from sympy import Matrix
    A219326_list = []
    for n in range(1,10**6):
        s = [int(d) for d in str(n)][::-1]
        m = len(s)
        if n == Matrix(m, m, lambda i, j: s[(i-j) % m]).det():
            A219326_list.append(n) # Chai Wah Wu, Oct 18 2021

A303260 Determinant of n X n matrix A[i,j] = (j - i - 1 mod n) + [i=j], i.e., the circulant having (n, 0, 1, ..., n-2) as first row.

Original entry on oeis.org

1, 1, 4, 28, 273, 3421, 52288, 941578, 19505545, 456790123, 11931215316, 343871642632, 10840081272265, 371026432467913, 13702802011918048, 543154131059225686, 23000016472483168305, 1036227971225610466711, 49492629462587441963140, 2497992686980609418282548, 132849300060919364474261281
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2018

Keywords

Comments

It is remarkable that for odd n, this determinant has its base n+1 digits equal to the middle row: e.g., a(9) = 456790123 is the determinant of the circulant matrix having [4,5,6,7,9,0,1,2,3] as middle row.
a(0) = 1 is (by convention) the determinant of a 0 X 0 matrix.

Examples

			a(5) = 3421 is the determinant of the matrix
   ( 5 0 1 2 3 )
   ( 3 5 0 1 2 )
   ( 2 3 5 0 1 )  and 3421 = 23501[6], i.e., written in base 6.
   ( 1 2 3 5 0 )
   ( 0 1 2 3 5 ).
		

Crossrefs

Cf. A081131(n+1) = determinant of the circulant matrix C(n) defined in formula, A070896 (signed variant).
See also A219324.

Programs

  • PARI
    a(n)=matdet(matrix(n,n,i,j,(j-i-1)%n+(i==j)))
    
  • Python
    from sympy import Matrix
    def A303260(n): return Matrix(n,n, lambda i,j:(j-i-1) % n + (i==j)).det() # Chai Wah Wu, Oct 18 2021

Formula

a(n) = det(I(n) + C(n)), where I(n) is the n X n identity matrix and C(n) is the circulant having (n-1, ..., 0) as first column.

A306593 Least number k such that the determinant of the circulant matrix formed by its decimal digits is equal to n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 334, 65, 42, 76, 455, 41, 40, 98, 123, 667, 64, 52, 778, 788, 51, 50, 899, 63, 86, 7787, 2025885, 8788, 62, 74, 46996, 61, 60, 66898, 67997, 85, 73, 78998, 88899, 88999, 335, 72, 4579975, 878888, 71, 70, 10243, 5354, 355, 989999, 114
Offset: 0

Views

Author

Paolo P. Lava, Feb 27 2019

Keywords

Comments

Here only the least numbers are listed: e.g., a(75) = 1031, even if 10002110 also produces 75.
The sequence is infinite because any number of the form (91*10^n - 10) / 90 for n > 0 (A267623 or A283508) has the determinant of the circulant matrix equal to n but, in general, it is not the least possible term. - Giovanni Resta, Mar 06 2019

Examples

			                        | 3 3 4 |
a(10) = 334 because det | 4 3 3 | = 10
                        | 3 4 3 |
.
and 334 is the least number to have this property.
.
                          | 4 6 9 9 6 |
                          | 6 4 6 9 9 |
a(34) = 46996 because det | 9 6 4 6 9 | = 34
                          | 9 9 6 4 6 |
                          | 6 9 9 6 4 |
.
and 46996 is the least number to have this property.
		

Crossrefs

Programs

  • Maple
    with(linalg): P:=proc(q) local a,b,c,d,j,k,i,n,t;
    print(0); for i from 1 to q do for n from 1 to q do
    d:=ilog10(n)+1; a:=convert(n, base, 10); c:=[];
    for k from 1 to nops(a) do c:=[op(c), a[-k]]; od; t:=[op([]), c];
    for k from 2 to d do b:=[op([]), c[nops(c)]];
    for j from 1 to nops(c)-1 do
    b:=[op(b), c[j]]; od;  c:=b; t:=[op(t), c]; od;
    if i=det(t) then print(n); break; fi; od; od; end: P(10^7);
  • PARI
    md(n) = my(d = if (n, digits(n), [0])); matdet(matrix(#d, #d, i, j, d[1+lift(Mod(j-i, #d))]));
    a(n) = my(k=0); while(md(k) != n, k++); k; \\ Michel Marcus, Mar 20 2019

Formula

A177894(a(n)) = n when a(n) >= 0. - Rémy Sigrist, Feb 27 2019

A323485 Least number k such that the determinant of the circulant matrix formed by its decimal digits is equal to k/n.

Original entry on oeis.org

1, 50, 648, 364, 20, 54, 21, 5000, 243, 10, 1636448, 324, 63414, 756, 73170, 432, 20043, 39366, 2121426, 46500, 6549795, 16236, 8490312, 303264, 200, 60450, 426465, 112, 27347, 2510460, 4464, 23616, 24354, 9282, 4253865, 3012552, 94017, 14022, 21411, 41000
Offset: 1

Views

Author

Paolo P. Lava, Jan 17 2019

Keywords

Comments

a(10^j) = 10^j, with j >= 0.

Examples

			      det | 1 | = 1 = 1/1.
.
      det | 5 0 | = 25 = 50/2.
          | 0 5 |
.
          | 6 4 8 |
      det | 8 6 4 | = 216 = 648/3.
          | 4 8 6 |
		

Crossrefs

Programs

  • Maple
    with(linalg): P:=proc(q) local a,b,c,d,i,j,k,n,t;
    for i from 1 to q do for n from 1 to q do
    d:=ilog10(n)+1; a:=convert(n,base,10); c:=[];
    for k from 1 to nops(a) do c:=[op(c),a[-k]]; od; t:=[op([]),c];
    for k from 2 to d do b:=[op([]),c[nops(c)]]; for j from 1 to nops(c)-1 do
    b:=[op(b),c[j]]; od;  c:=b; t:=[op(t),c]; od; if n=i*det(t) then
    print(n); break; fi; od; od; end: P(10^7);

A323486 Least number k such that the determinant of the circulant matrix formed by its decimal digits is equal to n*k.

Original entry on oeis.org

1, 10168, 119700, 196, 1973082, 63980523693, 167037139360, 1350720096, 1543479071, 17239680, 4000206089, 219566358180, 104171259465, 2380649994, 113323907385, 14059155927, 19925280
Offset: 1

Views

Author

Paolo P. Lava, Jan 17 2019

Keywords

Examples

			      det | 1 | = 1 = 1*1.
.
          | 1 0 1 6 8|
          | 8 1 0 1 6|
      det | 6 8 1 0 1| = 20336 = 2*10168.
          | 1 6 8 1 0|
          | 0 1 6 8 1|
		

Crossrefs

Programs

  • Maple
    with(linalg): P:=proc(q) local a,b,c,d,i,j,k,n,t;
    for i from 1 to q do for n from 1 to q do
    d:=ilog10(n)+1; a:=convert(n,base,10); c:=[];
    for k from 1 to nops(a) do c:=[op(c),a[-k]]; od; t:=[op([]),c];
    for k from 2 to d do b:=[op([]),c[nops(c)]]; for j from 1 to nops(c)-1 do
    b:=[op(b),c[j]]; od;  c:=b; t:=[op(t),c]; od; if i*n=det(t) then
    print(n); break; fi; od; od; end: P(10^7);

Extensions

a(6)-a(17) from Giovanni Resta, Jan 21 2019

A306662 Least number k such that the determinant of the circulant matrix of its representation in base 2 is equal to n.

Original entry on oeis.org

0, 1, 5, 11, 23, 47, 95, 191, 43, 38, 1535, 3071, 571, 12287, 24575, 137, 269, 196607, 393215, 786431, 295, 687, 6291455, 12582911, 69, 155, 100663295, 134, 293, 805306367, 1610612735, 3221225471, 75, 518, 25769803775, 301, 8874
Offset: 0

Views

Author

Paolo P. Lava, Mar 04 2019

Keywords

Comments

Here only the least numbers are listed: e.g., a(10) = 1531, even if 1791, 1919, 1983, 2015, 2031, 2039, 2043, etc. also produce 10.
The sequence is infinite because any number of the form 3*2^(n-1) - 1 (A083329) has the determinant of the circulant matrix of its representation in base 2 equal to n but, in general, it is not the least possible term.
It would be nice to characterize the values of n where k < A083329(n).

Examples

			                                      | 1 0 1 1 |
a(3) = 11 because 11 = 1011_2 and det | 1 1 0 1 | = 3
                                      | 1 1 1 0 |
                                      | 0 1 1 1 |
.
and 11 is the least number to have this property.
.
                                       | 1 0 1 1 1 |
                                       | 1 1 0 1 1 |
a(4) = 23 because 23 = 10111_2 and det | 1 1 1 0 1 | = 4
                                       | 1 1 1 1 0 |
                                       | 0 1 1 1 1 |
.
and 23 is the least number to have this property.
		

Crossrefs

Programs

  • Maple
    with(linalg): P:=proc(q) local a, b, c, d, j, k, i, n, t;
    print(0); for i from 1 to q do for n from 1 to q do
    a:=convert(n, base, 2); d:=nops(a); c:=[];
    for k from 1 to nops(a) do c:=[op(c), a[-k]]; od; t:=[op([]), c];
    for k from 2 to d do b:=[op([]), c[nops(c)]];
    for j from 1 to nops(c)-1 do
    b:=[op(b), c[j]]; od;  c:=b; t:=[op(t), c]; od;
    if i=det(t) then print(n); break; fi; od; od; end: P(10^7);

Extensions

a(31)-a(36) from Giovanni Resta, Mar 05 2019

A306853 Positive integers equal to the permanent of the circulant matrix formed by their decimal digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 261, 370, 407, 52036, 724212, 223123410
Offset: 1

Views

Author

Paolo P. Lava, Mar 13 2019

Keywords

Comments

1, 2, 3, 4, 5, 6, 7, 8, 9, 370 and 407 are also equal to the determinant of the circulant matrix formed by their decimal digits.

Examples

			     | 2 6 1 |
perm | 1 2 6 | = 2*2*2 + 6*6*6 + 1*1*1 + 1*2*6 + 6*1*2 + 2*6*1 = 261.
     | 6 1 2 |
.
     | 2 2 3 1 2 3 4 1 0 |
     | 0 2 2 3 1 2 3 4 1 |
     | 1 0 2 2 3 1 2 3 4 |
     | 4 1 0 2 2 3 1 2 3 |
perm | 3 4 1 0 2 2 3 1 2 | = 223123410
     | 2 3 4 1 0 2 2 3 1 |
     | 1 2 3 4 1 0 2 2 3 |
     | 3 1 2 3 4 1 0 2 2 |
     | 2 3 1 2 3 4 1 0 2 |
		

Crossrefs

Up to n=110 the permanent of the circulant matrix of the digits of n is equal to A101337 but from n=111 on it can differ.

Programs

  • Maple
    with(linalg): P:=proc(q) local a, b, c, d, i, j, k, n, t;
    for n from 1 to q do d:=ilog10(n)+1; a:=convert(n, base, 10); c:=[];
    for k from 1 to nops(a) do c:=[op(c), a[-k]]; od; t:=[op([]), c];
    for k from 2 to d do b:=[op([]), c[nops(c)]];
    for j from 1 to nops(c)-1 do b:=[op(b), c[j]]; od;
    c:=b; t:=[op(t), c]; od; if n=permanent(t)
    then print(n); fi; od; end: P(10^7);
  • PARI
    mpd(n) = {my(d = digits(n)); matpermanent(matrix(#d, #d, i, j, d[1+lift(Mod(j-i, #d))]));}
    isok(n) = mpd(n) == n; \\ Michel Marcus, Mar 14 2019
    
  • Python
    from sympy import Matrix
    A306853_list = []
    for n in range(1,10**6):
        s = [int(d) for d in str(n)]
        m = len(s)
        if n == Matrix(m, m, lambda i, j: s[(i-j) % m]).per():
            A306853_list.append(n) # Chai Wah Wu, Oct 18 2021

Extensions

a(15) from Vaclav Kotesovec, Aug 19 2021

A219357 a(n) = smallest number greater than n, equal to the determinant of the circulant matrix formed by its base-n digits.

Original entry on oeis.org

17298, 1352, 28, 28, 320, 81, 133, 104, 247, 126, 1273, 252, 793, 473, 520, 980, 832, 513, 468, 5792, 684, 1738, 2511, 684, 1520, 14711, 7588, 938, 3857, 2275, 4680, 13392, 5184, 1648, 10535, 1820, 9143, 8473, 3843, 21880, 11609, 3843
Offset: 2

Views

Author

Hans Havermann, Nov 18 2012

Keywords

Comments

Trivially all one-digit matrices are solutions, which is why 'greater than n' is specified. Two-digit matrices can never be a solution, so entries are actually greater than n^2. Most terms are three-digit solutions (less than n^3). Known exceptions are 15 digits (base 2), 7 digits (base 3), and 4 digits (bases 6, 798, 1182).
Up to base 1200, coincident terms are 28, 684, 3843, 8190, 47664, 80199, 351819, 323505, 5879259, 601524, 17159660, 20777715, respectively for base pairs (4,5), (22,25), (40,43), (81,86), (94,97), (112,115), (184,187), (276,386), (472,475), (738,749), (1061,1066), (1131,1136).

Examples

			In A219325 (base 2), the smallest number greater than 2 is 17298.
In A219324 (base 10), the smallest number greater than 10 is 247.
		

Crossrefs

Cf. A219324 (base 10), A219325 (base 2).

Programs

  • Mathematica
    dcm[n_,b_] := (l = IntegerDigits[n,b]; Det[NestList[RotateRight, l, Length[l]-1]]); Table[i=b; While[dcm[i,b] != i, i++]; i, {b, 2, 43}]
Showing 1-10 of 15 results. Next