cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A219324 Positive integers n that are equal to the determinant of the circulant matrix formed by the decimal digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 247, 370, 378, 407, 481, 518, 592, 629, 1360, 3075, 26027, 26933, 45018, 69781, 80487, 154791, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 11955168, 80651025, 95738203, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160
Offset: 1

Views

Author

Max Alekseyev, Nov 17 2012

Keywords

Comments

Belukhov proved that if d is an odd divisor of p-1, then for integers q=(p^d-1)/((p-1)*d) and t such that (p-1)*(d-1)/2 < t < (p-1)*(d+1)/2 and gcd(t,d)=1, the number q*t equals the determinant of the circulant matrix formed by its base-p digits. For this sequence (where p=10), not every term can be obtained in this way.
If you rotate left (or take the absolute value of the determinant), then the sequence contains the following additional terms: 48, 1547, 123823, 289835, 23203827, ... (cf. A219326, A219327). - Robert G. Wilson v, Dec 12 2012
a(58) > 6*10^11. - Giovanni Resta, Dec 14 2012
See also A303260 for a different generalization: n X n circulant determinant having its base n+1 digits equal to a row. - M. F. Hasler, Apr 23 2018

Examples

			          | 2 4 7 |
247 = det | 7 2 4 |
          | 4 7 2 |
		

Crossrefs

Cf. A219325 (binary digits), A219326 (digits in reverse order), A219327 (absolute value of determinant), A306853 (permanent).
Cf. A303260.

Programs

  • Mathematica
    f[n_] := Det[ NestList[ RotateRight@# &, IntegerDigits@ n, Floor[ Log10[n] + 1] - 1]]; k = 1; lst = {}; While[k < 1120000000, a = f@ k; If[a == k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Nov 20 2012 *)
    Select[Range[53*10^5],Det[Table[RotateRight[IntegerDigits[#],d],{d,0,IntegerLength[ #]-1}]]==#&] (* The program generates the first 34 terms of the sequence. To generate more, increase the Range constant, but the program will take a long time to run. *) (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    { isA219324(n) = local(d,m,r); d=eval(Vec(Str(n))); m=#d; r=Mod(x,polcyclo(m)); prod(j=1,m,sum(i=1,m,d[i]*r^((i-1)*j)))==n }
    
  • Python
    from sympy import Matrix
    A219324_list = []
    for n in range(1,10**4):
        s = [int(d) for d in str(n)]
        m = len(s)
        if n == Matrix(m, m, lambda i, j: s[(i-j) % m]).det():
            A219324_list.append(n) # Chai Wah Wu, Oct 18 2021

A219327 Positive integers k that are equal to the absolute value of the determinant of the circulant matrix formed by the decimal digits of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 48, 247, 370, 378, 407, 481, 518, 592, 629, 1360, 1547, 3075, 26027, 26933, 45018, 69781, 80487, 123823, 154791, 289835, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 11955168, 23203827, 80651025, 95738203
Offset: 1

Views

Author

Max Alekseyev, Nov 17 2012

Keywords

Comments

Contains A219324 and A219326 as subsequences.
Equal to the sequence defined by replacing circulant matrices with left circulant matrices. - Chai Wah Wu, Oct 18 2021

Crossrefs

A219324, the main entry for this sequence, provides references and further details.
Cf. A219326.

Programs

  • Python
    from sympy import Matrix
    A219327_list = []
    for n in range(1,10**6):
        s = [int(d) for d in str(n)]
        m = len(s)
        if n == abs(Matrix(m, m, lambda i, j: s[(i-j) % m]).det()):
            A219327_list.append(n) # Chai Wah Wu, Oct 18 2021

Extensions

a(53)-a(63) from Max Alekseyev, Feb 15 2013

A303261 Numbers having n digits in base n+1, and equal to the determinant of a circulant matrix based on these digits.

Original entry on oeis.org

1, 28, 35, 1936, 2761, 3421, 3732, 4043, 4354, 281048, 289820, 333293, 420239, 428752, 430686, 437554, 500380, 500888, 736600, 941578, 984377, 1027176, 1069975, 1112774, 1155573, 1662216, 1776201, 2087008, 5331625, 6825024, 7014400
Offset: 1

Views

Author

M. F. Hasler, Apr 25 2018

Keywords

Comments

A subsequence of A303262, namely, the terms in row n which correspond to n-digit numbers in base n+1.

Crossrefs

Programs

  • PARI
    for(n=1, 10, for(k=(n+1)^(n-1), (n+1)^n-1, d=Vec(digits(k, n+1)); abs(matdet(matrix(n, n, i, j, d[(j-i)%n+1])))==k&&print1(k", ")))

A303262 Table where row n lists numbers N equal to the determinant of an n X n circulant having as a row the base n+1 digits of N.

Original entry on oeis.org

1, 1, 1, 8, 9, 28, 35, 1, 65, 80, 91, 1, 44, 99, 550, 854, 1936, 2761, 3421, 3732, 4043, 4354, 1, 63, 65, 2527, 3311, 3969, 4095, 13545, 13889, 1, 128, 129, 145, 6066, 16384, 16385, 16512, 16513, 16641, 18560, 18577, 18669, 18705, 90738, 103759, 103965, 109220, 120142, 121920
Offset: 1

Views

Author

M. F. Hasler, Apr 23 2018

Keywords

Examples

			The table starts
(n=1) 1,
(n=2) 1,
(n=3) 1, 8, 9, 28, 35,
(n=4) 1, 65, 80, 91,
(n=5) 1, 44, 99, 550, 854, 1936, 2761, 3421, 3732, 4043, 4354,
(n=6) 1, 63, 65, 2527, 3311, 3969, 4095, 13545, 13889,
(n=7) 1, 128, 129, 145, 6066, 16384, 16385, 16512, 16513, 16641, 18560, 18577, 18669, 18705, 90738, 103759, 103965, ...
For example, T(3,1) = 1 because the determinant of the circulant starting with [0, 0, 1] is 1. For the same reason each row starts with 1.
T(3,2) = 8 = 020[4] (digits in base 4) = det(circulant([0, 2, 0])).
T(3,5) = 35 = 203[4] = det(circulant([2, 0, 3])).
		

Crossrefs

Programs

  • PARI
    for(n=1,7,for(k=1,(n+1)^n-1,d=Vec(digits(k,n+1),-n);abs(matdet(matrix(n,n,i,j,d[(j-i)%n+1])))==k&&print1(k",")))

A348428 Positive integers m that are equal to the determinant of the left circulant matrix formed by the decimal digits of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1547, 26027, 26933, 45018, 69781, 80487, 154791, 23203827, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160, 506172839, 530864197, 543209876, 897163795, 1662971175, 2293668391, 3880266075, 6473710191
Offset: 1

Views

Author

Chai Wah Wu, Oct 18 2021

Keywords

Comments

A left circulant matrix is also called a anti-circulant or (-1)-circulant matrix.
Subsequence of A219327.
Fixed points of A177894. - John Keith, Oct 24 2021

Examples

			           ⎡1  5  4  7⎤
1547 = det ⎢5  4  7  1⎥
           ⎢4  7  1  5⎥
           ⎣7  1  5  4⎦.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Equal[Det[NestList[RotateLeft, #2, #3 - 1]], #1] & @@ {#1, #2, Length[#2]} & @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    isok(m) = {my(d=digits(m), x); matdet(matrix(#d, #d, i, j, if (i==1, d[j], x = lift(Mod(j+i-1, #d)); if (!x, x += #d); d[x]))) == m;} \\ Michel Marcus, Oct 19 2021
  • Python
    from sympy import Matrix
    A348428_list = []
    for n in range(1,10**6):
        s = [int(d) for d in str(n)]
        m = len(s)
        if n == Matrix(m, m, lambda i, j: s[(i+j) % m]).det():
            A348428_list.append(n)
    
Showing 1-5 of 5 results.