A219324
Positive integers n that are equal to the determinant of the circulant matrix formed by the decimal digits of n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 247, 370, 378, 407, 481, 518, 592, 629, 1360, 3075, 26027, 26933, 45018, 69781, 80487, 154791, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 11955168, 80651025, 95738203, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160
Offset: 1
| 2 4 7 |
247 = det | 7 2 4 |
| 4 7 2 |
-
f[n_] := Det[ NestList[ RotateRight@# &, IntegerDigits@ n, Floor[ Log10[n] + 1] - 1]]; k = 1; lst = {}; While[k < 1120000000, a = f@ k; If[a == k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Nov 20 2012 *)
Select[Range[53*10^5],Det[Table[RotateRight[IntegerDigits[#],d],{d,0,IntegerLength[ #]-1}]]==#&] (* The program generates the first 34 terms of the sequence. To generate more, increase the Range constant, but the program will take a long time to run. *) (* Harvey P. Dale, Jul 05 2021 *)
-
{ isA219324(n) = local(d,m,r); d=eval(Vec(Str(n))); m=#d; r=Mod(x,polcyclo(m)); prod(j=1,m,sum(i=1,m,d[i]*r^((i-1)*j)))==n }
-
from sympy import Matrix
A219324_list = []
for n in range(1,10**4):
s = [int(d) for d in str(n)]
m = len(s)
if n == Matrix(m, m, lambda i, j: s[(i-j) % m]).det():
A219324_list.append(n) # Chai Wah Wu, Oct 18 2021
A219327
Positive integers k that are equal to the absolute value of the determinant of the circulant matrix formed by the decimal digits of k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 48, 247, 370, 378, 407, 481, 518, 592, 629, 1360, 1547, 3075, 26027, 26933, 45018, 69781, 80487, 123823, 154791, 289835, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 11955168, 23203827, 80651025, 95738203
Offset: 1
A219324, the main entry for this sequence, provides references and further details.
-
from sympy import Matrix
A219327_list = []
for n in range(1,10**6):
s = [int(d) for d in str(n)]
m = len(s)
if n == abs(Matrix(m, m, lambda i, j: s[(i-j) % m]).det()):
A219327_list.append(n) # Chai Wah Wu, Oct 18 2021
A303261
Numbers having n digits in base n+1, and equal to the determinant of a circulant matrix based on these digits.
Original entry on oeis.org
1, 28, 35, 1936, 2761, 3421, 3732, 4043, 4354, 281048, 289820, 333293, 420239, 428752, 430686, 437554, 500380, 500888, 736600, 941578, 984377, 1027176, 1069975, 1112774, 1155573, 1662216, 1776201, 2087008, 5331625, 6825024, 7014400
Offset: 1
-
for(n=1, 10, for(k=(n+1)^(n-1), (n+1)^n-1, d=Vec(digits(k, n+1)); abs(matdet(matrix(n, n, i, j, d[(j-i)%n+1])))==k&&print1(k", ")))
A303262
Table where row n lists numbers N equal to the determinant of an n X n circulant having as a row the base n+1 digits of N.
Original entry on oeis.org
1, 1, 1, 8, 9, 28, 35, 1, 65, 80, 91, 1, 44, 99, 550, 854, 1936, 2761, 3421, 3732, 4043, 4354, 1, 63, 65, 2527, 3311, 3969, 4095, 13545, 13889, 1, 128, 129, 145, 6066, 16384, 16385, 16512, 16513, 16641, 18560, 18577, 18669, 18705, 90738, 103759, 103965, 109220, 120142, 121920
Offset: 1
The table starts
(n=1) 1,
(n=2) 1,
(n=3) 1, 8, 9, 28, 35,
(n=4) 1, 65, 80, 91,
(n=5) 1, 44, 99, 550, 854, 1936, 2761, 3421, 3732, 4043, 4354,
(n=6) 1, 63, 65, 2527, 3311, 3969, 4095, 13545, 13889,
(n=7) 1, 128, 129, 145, 6066, 16384, 16385, 16512, 16513, 16641, 18560, 18577, 18669, 18705, 90738, 103759, 103965, ...
For example, T(3,1) = 1 because the determinant of the circulant starting with [0, 0, 1] is 1. For the same reason each row starts with 1.
T(3,2) = 8 = 020[4] (digits in base 4) = det(circulant([0, 2, 0])).
T(3,5) = 35 = 203[4] = det(circulant([2, 0, 3])).
-
for(n=1,7,for(k=1,(n+1)^n-1,d=Vec(digits(k,n+1),-n);abs(matdet(matrix(n,n,i,j,d[(j-i)%n+1])))==k&&print1(k",")))
A348428
Positive integers m that are equal to the determinant of the left circulant matrix formed by the decimal digits of m.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 1547, 26027, 26933, 45018, 69781, 80487, 154791, 23203827, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160, 506172839, 530864197, 543209876, 897163795, 1662971175, 2293668391, 3880266075, 6473710191
Offset: 1
⎡1 5 4 7⎤
1547 = det ⎢5 4 7 1⎥
⎢4 7 1 5⎥
⎣7 1 5 4⎦.
-
Select[Range[10^6], Equal[Det[NestList[RotateLeft, #2, #3 - 1]], #1] & @@ {#1, #2, Length[#2]} & @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Oct 18 2021 *)
-
isok(m) = {my(d=digits(m), x); matdet(matrix(#d, #d, i, j, if (i==1, d[j], x = lift(Mod(j+i-1, #d)); if (!x, x += #d); d[x]))) == m;} \\ Michel Marcus, Oct 19 2021
-
from sympy import Matrix
A348428_list = []
for n in range(1,10**6):
s = [int(d) for d in str(n)]
m = len(s)
if n == Matrix(m, m, lambda i, j: s[(i+j) % m]).det():
A348428_list.append(n)
Showing 1-5 of 5 results.
Comments