cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219393 Numbers k such that 23*k+1 is a square.

Original entry on oeis.org

0, 21, 25, 88, 96, 201, 213, 360, 376, 565, 585, 816, 840, 1113, 1141, 1456, 1488, 1845, 1881, 2280, 2320, 2761, 2805, 3288, 3336, 3861, 3913, 4480, 4536, 5145, 5205, 5856, 5920, 6613, 6681, 7416, 7488, 8265, 8341, 9160, 9240, 10101, 10185, 11088, 11176, 12121, 12213
Offset: 1

Views

Author

Bruno Berselli, Nov 24 2012

Keywords

Comments

Equivalently, numbers of the form m*(23*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of h*(h+2)/23.

Crossrefs

Cf. similar sequences listed in A219257.

Programs

  • Magma
    [n: n in [0..13000] | IsSquare(23*n+1)];
    
  • Magma
    I:=[0,21,25,88,96]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A219393:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(23*n+1), integer) then print(n);
    fi; od; end:
    A219393(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    Select[Range[0, 13000], IntegerQ[Sqrt[23 # + 1]] &]
    CoefficientList[Series[x (21 + 4 x + 21 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,21,25,88,96},50] (* Harvey P. Dale, Jun 22 2025 *)

Formula

G.f.: x^2*(21 + 4*x + 21*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (46*n*(n-1) + 19*(-1)^n*(2*n - 1) + 3)/8 + 2.
Sum_{n>=2} 1/a(n) = 23/4 - cot(2*Pi/23)*Pi/2. - Amiram Eldar, Mar 16 2022