A219393 Numbers k such that 23*k+1 is a square.
0, 21, 25, 88, 96, 201, 213, 360, 376, 565, 585, 816, 840, 1113, 1141, 1456, 1488, 1845, 1881, 2280, 2320, 2761, 2805, 3288, 3336, 3861, 3913, 4480, 4536, 5145, 5205, 5856, 5920, 6613, 6681, 7416, 7488, 8265, 8341, 9160, 9240, 10101, 10185, 11088, 11176, 12121, 12213
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Cf. similar sequences listed in A219257.
Programs
-
Magma
[n: n in [0..13000] | IsSquare(23*n+1)];
-
Magma
I:=[0,21,25,88,96]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
Maple
A219393:=proc(q) local n; for n from 1 to q do if type(sqrt(23*n+1), integer) then print(n); fi; od; end: A219393(1000); # Paolo P. Lava, Feb 19 2013
-
Mathematica
Select[Range[0, 13000], IntegerQ[Sqrt[23 # + 1]] &] CoefficientList[Series[x (21 + 4 x + 21 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *) LinearRecurrence[{1,2,-2,-1,1},{0,21,25,88,96},50] (* Harvey P. Dale, Jun 22 2025 *)
Formula
G.f.: x^2*(21 + 4*x + 21*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (46*n*(n-1) + 19*(-1)^n*(2*n - 1) + 3)/8 + 2.
Sum_{n>=2} 1/a(n) = 23/4 - cot(2*Pi/23)*Pi/2. - Amiram Eldar, Mar 16 2022
Comments