cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219394 Numbers k such that 17*k+1 is a square.

Original entry on oeis.org

0, 15, 19, 64, 72, 147, 159, 264, 280, 415, 435, 600, 624, 819, 847, 1072, 1104, 1359, 1395, 1680, 1720, 2035, 2079, 2424, 2472, 2847, 2899, 3304, 3360, 3795, 3855, 4320, 4384, 4879, 4947, 5472, 5544, 6099, 6175, 6760, 6840, 7455, 7539, 8184, 8272, 8947
Offset: 1

Views

Author

Bruno Berselli, Dec 03 2012

Keywords

Comments

Equivalently, numbers of the form m*(17*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of h*(h+2)/17.

Crossrefs

Cf. similar sequences listed in A219257.

Programs

  • Magma
    [n: n in [0..9000] | IsSquare(17*n+1)];
    
  • Magma
    I:=[0,15,19,64,72]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A219394:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(17*n+1), integer) then print(n);
    fi; od; end:
    A219394(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    Select[Range[0, 9000], IntegerQ[Sqrt[17 # + 1]] &]
    CoefficientList[Series[x (15 + 4 x + 15 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,15,19,64,72},50] (* Harvey P. Dale, May 01 2017 *)

Formula

G.f.: x^2*(15+4*x+15*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (34*n*(n-1)+13*(-1)^n*(2*n-1)+5)/8 + 1.
Sum_{n>=2} 1/a(n) = 17/4 - cot(2*Pi/17)*Pi/2. - Amiram Eldar, Mar 15 2022