cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219396 Numbers k such that 19*k+1 is a square.

Original entry on oeis.org

0, 17, 21, 72, 80, 165, 177, 296, 312, 465, 485, 672, 696, 917, 945, 1200, 1232, 1521, 1557, 1880, 1920, 2277, 2321, 2712, 2760, 3185, 3237, 3696, 3752, 4245, 4305, 4832, 4896, 5457, 5525, 6120, 6192, 6821, 6897, 7560, 7640, 8337, 8421, 9152, 9240
Offset: 1

Views

Author

Bruno Berselli, Dec 03 2012

Keywords

Comments

Equivalently, numbers of the form m*(19*m+2), where m = 0, -1, 1, -2, 2, -3, 3,...
Also, integer values of h*(h+2)/19.

Crossrefs

Cf. similar sequences listed in A219257.

Programs

  • Magma
    [n: n in [0..10000] | IsSquare(19*n+1)];
    
  • Magma
    I:=[0, 17, 21, 72, 80]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A219396:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(19*n+1), integer) then print(n);
    fi; od; end:
    A219396(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    Select[Range[0, 10000], IntegerQ[Sqrt[19 # + 1]] &]
    CoefficientList[Series[x (17 + 4 x + 17 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,17,21,72,80},60] (* Harvey P. Dale, Sep 08 2021 *)

Formula

G.f.: x^2*(17 + 4*x + 17*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (38*n*(n-1) + 15*(-1)^n*(2*n - 1)-1)/8 + 2.
Sum_{n>=2} 1/a(n) = 19/4 - cot(2*Pi/19)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

Typo corrected in the first comment by Mokhtar Mohamed, Dec 03 2012