A219507 Pierce expansion of (5 - sqrt(21))/2.
4, 6, 109, 111, 1330669, 1330671, 2356194280407770989, 2356194280407770991, 13080769480548649962914459850235688797656360638877986029, 13080769480548649962914459850235688797656360638877986031
Offset: 0
Examples
Let x = 1/2*(5 - sqrt(21)). We have the alternating series expansions x = 1/4 - 1/(4*6) + 1/(4*6*109) - 1/(4*6*109*111) + ... x^3 = 1/109 - 1/(109*111) + 1/(109*111*1330669) - ... x^9 = 1/1330669 - 1/(1330669*1330671) + ....
Links
- G. C. Greubel, Table of n, a(n) for n = 0..13
- T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly, Vol. 36 No. 10, (1929) p.523-525.
- Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
- Eric Weisstein's World of Mathematics, Pierce Expansion
Programs
-
Mathematica
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(5 - Sqrt[21])/2 , 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
Formula
a(2*n) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) - 1.
a(2*n+1) = (1/2*(5 + sqrt(21)))^(3^n) + (1/2*(5 - sqrt(21)))^(3^n) + 1.
Comments