A201377 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of distinct pairs.
1, 1, 2, 1, 3, 5, 2, 5, 9, 17, 2, 7, 14, 27, 46, 3, 10, 21, 42, 74, 123, 4, 14, 31, 64, 116, 197, 323, 5, 19, 44, 93, 174, 303, 506, 809, 6, 25, 61, 132, 254, 452, 769, 1251, 1966, 8, 33, 83, 185, 363, 659, 1141, 1885, 3006, 4660
Offset: 0
Examples
Partitions of (2,1) into distinct positive pairs, T(2,1) = 3: (2,1), (2,0) + (0,1), (1,1) + (1,0); Partitions of (2,2) into distinct positive pairs, T(2,2) = 5: (2,2), (2,1) + (0,1), (2,0) + (0,2), (1,2) + (1,0), (1,1) + (1,0) + (0,1). First ten rows of triangle: 0: 1 1: 1 2 2: 1 3 5 3: 2 5 9 17 4: 2 7 14 27 46 5: 3 10 21 42 74 123 6: 4 14 31 64 116 197 323 7: 5 19 44 93 174 303 506 809 8: 6 25 61 132 254 452 769 1251 1966 9: 8 33 83 185 363 659 1141 1885 3006 4660
Links
- Alois P. Heinz, Rows n = 0..80, flattened
- Reinhard Zumkeller, Haskell programs for A054225, A054242, A201376, A201377
Crossrefs
Programs
-
Haskell
-- see link.
-
Mathematica
nmax = 10; f[x_, y_] := Product[1 + x^n y^k, {n, 0, nmax}, {k, 0, nmax}]/2; se = Series[f[x, y], {x, 0, nmax}, {y, 0, nmax}]; coes = CoefficientList[se, {x, y}]; t[n_ /; n >= 0, k_] /; 0 <= k <= n := coes[[n-k+1, k+1]]; T[n_, k_] := t[n+k, k]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 08 2021 *)
Formula
For g.f. see A054242.
Extensions
Entry revised by N. J. A. Sloane, Nov 30 2011
Comments