A219859 Triangular array read by rows: T(n,k) is the number of endofunctions, functions f:{1,2,...,n}->{1,2,...,n}, that have exactly k elements with no preimage; n>=0, 0<=k<=n.
1, 1, 0, 2, 2, 0, 6, 18, 3, 0, 24, 144, 84, 4, 0, 120, 1200, 1500, 300, 5, 0, 720, 10800, 23400, 10800, 930, 6, 0, 5040, 105840, 352800, 294000, 63210, 2646, 7, 0, 40320, 1128960, 5362560, 7056000, 2857680, 324576, 7112, 8, 0, 362880, 13063680, 83825280, 160030080, 105099120, 23496480, 1524600, 18360, 9, 0
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 0; 2, 2, 0; 6, 18, 3, 0; 24, 144, 84, 4, 0; 120, 1200, 1500, 300, 5, 0; 720, 10800, 23400, 10800, 930, 6, 0; ...
References
- M. Bona, Introduction to Enumerative Combinatorics, McGraw Hill, 2007.
Crossrefs
Programs
-
Mathematica
Table[Table[n!/k!StirlingS2[n,n-k],{k,0,n}],{n,0,8}]//Grid
-
PARI
row(n) = vector(n+1, k, k--; n!/k! * stirling(n,n-k,2)); \\ Michel Marcus, Jan 24 2022
Formula
T(n,k) = n!/k! * Stirling2(n,n-k).
T(n,0) = n!.
T(n,k) = A055302(n,k)*(n-k) + A055302(n,k+1)*(k+1). The first term (on rhs of this equation) is the number of such functions in which the preimage of f(n) contains more than one element. The second term is the number of such functions in which the preimage of f(n) contains exactly one element.
T(n,k) = binomial(n,k) Sum_{j=0..n-k}(-1)^j*binomial(n-k,j)*(n-k-j)^n. - Geoffrey Critzer, Aug 20 2013
E.g.f.: 1/(1 - (A(x,y) - y*x + x)) where A(x,y) is the e.g.f. for A055302. - Geoffrey Critzer, Jan 24 2022
From Alois P. Heinz, Jan 24 2022: (Start)
Sum_{k=0..n} k * T(n,k) = A209290(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A344053(n). (End)
Comments