cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A219967 Number A(n,k) of tilings of a k X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 0, 2, 4, 3, 4, 2, 0, 1, 1, 0, 3, 8, 8, 8, 8, 3, 0, 1, 1, 1, 4, 13, 21, 28, 21, 13, 4, 1, 1, 1, 0, 5, 19, 31, 65, 65, 31, 19, 5, 0, 1, 1, 0, 7, 35, 70, 170, 267, 170, 70, 35, 7, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			A(4,4) = 3, because there are 3 tilings of a 4 X 4 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
  ._._____.  ._____._.  ._._._._.
  | |_____|  |_____| |  | . | . |
  | | . | |  | | . | |  |___|___|
  |_|___| |  | |___|_|  | . | . |
  |_____|_|  |_|_____|  |___|___| .
Square array A(n,k) begins:
  1,  1,  1,  1,  1,   1,    1,     1,     1, ...
  1,  0,  0,  1,  0,   0,    1,     0,     0, ...
  1,  0,  1,  1,  1,   2,    2,     3,     4, ...
  1,  1,  1,  2,  3,   4,    8,    13,    19, ...
  1,  0,  1,  3,  3,   8,   21,    31,    70, ...
  1,  0,  2,  4,  8,  28,   65,   170,   456, ...
  1,  1,  2,  8, 21,  65,  267,   804,  2530, ...
  1,  0,  3, 13, 31, 170,  804,  2744, 12343, ...
  1,  0,  4, 19, 70, 456, 2530, 12343, 66653, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A079978, A000931(n+3), A219968, A202536, A219969, A219970, A219971, A219972, A219973, A219974.
Main diagonal gives: A219975.

Programs

  • Maple
    b:= proc(n, l) option remember; local k, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od;
             b(n, subsop(k=3, l))+
             `if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{ k, t}, If [Max[l] > n, 0, If[n == 0 || l == {}, 1, If[ Min[l] > 0 ,t = Min[l]; b[n-t, l-t], k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 3]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1, k+2 -> 1}]], 0] ] ] ] ]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)

A376031 Number of ways to tile a 3 x (2*n) rectangle with dominoes and T's.

Original entry on oeis.org

1, 3, 18, 112, 692, 4294, 26624, 165086, 1023662, 6347440, 39358774, 244053158, 1513307844, 9383614226, 58185263358, 360791140032, 2237168644134, 13872079956206, 86017029971684, 533368425534858, 3307273890427894, 20507514248408832, 127161570097317790
Offset: 0

Views

Author

Greg Dresden and Lucas MingQu Xia, Sep 06 2024

Keywords

Comments

a(n) is the number of ways to tile a 3 X (2*n) rectangle with two kinds of tiles: dominoes (made up of 2 cells) and T's (made up of 4 cells), each of which can be rotated as needed.

Examples

			For n=3, here is one of the a(3) = 112 ways to tile a 3 x 6 rectangle using our dominoes and T's:
 ___________
| |___| | | |
|  _|_  |_|_|
|_|___|_|___|.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, 7, 4, -8, 2}, {1, 3, 18, 112, 692}, 30] (* Paolo Xausa, Sep 23 2024 *)

Formula

a(n) = 5*a(n-1) + 7*a(n-2) + 4*a(n-3) - 8*a(n-4) + 2*a(n-5).
G.f.: -(2*x^4-3*x^3-4*x^2-2*x+1)/(2*x^5-8*x^4+4*x^3+7*x^2+5*x-1).
Showing 1-2 of 2 results.