cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A202536 Number of tilings of a 4 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 1, 3, 3, 8, 21, 31, 70, 165, 286, 615, 1351, 2548, 5353, 11343, 22320, 46349, 96516, 193944, 400313, 826747, 1678540, 3453642, 7105102, 14498569, 29781633, 61158957, 125108639, 256763850, 526846289, 1079030715, 2213527089, 4540131569, 9304062828
Offset: 0

Views

Author

Alois P. Heinz, Dec 20 2011

Keywords

Examples

			a(3) = 3, because there are 3 tilings of a 4 X 3 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._____.  ._____.  ._._._.
| | | |  |_____|  |_____|
| | | |  | | | |  |_____|
|_|_|_|  | | | |  |_____|
|_____|  |_|_|_|  |_____|
a(4) = 3, because there are 3 tilings of a 4 X 4 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._._____.  ._____._.  ._._._._.
| |_____|  |_____| |  | . | . |
| | . | |  | | . | |  |___|___|
|_|___| |  | |___|_|  | . | . |
|_____|_|  |_|_____|  |___|___|
		

Crossrefs

Column k=4 of A219967.

Programs

  • Maple
    gf:= -(x^3+x-1) *(x^18 -3*x^15 +x^14 +7*x^12 -3*x^11 -11*x^9 +3*x^8 +12*x^6 -x^5 -6*x^3+1) *(x-1)^2 *(x^2+x+1)^2 / (x^30 -x^29 +x^28 -5*x^27 +5*x^26 -4*x^25 +19*x^24 -12*x^23 +8*x^22 -56*x^21 +14*x^20 -10*x^19 +119*x^18 -2*x^17 +18*x^16 -174*x^15 -19*x^14 -35*x^13 +173*x^12 +31*x^11 +44*x^10 -115*x^9 -23*x^8 -29*x^7 +48*x^6 +8*x^5 +9*x^4 -11*x^3 -x^2 -x+1):
    a:= n-> coeff(series(gf, x, n+1),x,n);
    seq(a(n), n=0..50);

Formula

G.f.: see Maple program.

A219968 Number of tilings of a 3 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 8, 13, 19, 35, 58, 89, 154, 256, 405, 681, 1131, 1822, 3025, 5012, 8156, 13465, 22257, 36415, 59976, 98961, 162370, 267184, 440335, 723521, 1190237, 1960146, 3223045, 5301876, 8727650, 14355677, 23615683, 38865307, 63937660, 105184761
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			a(6) = 8, because there are 8 tilings of a 3 X 6 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._._._._._._.  ._____._._._.  ._._____._._.  ._._._____._.
| | | | | | |  |_____| | | |  | |_____| | |  | | |_____| |
| | | | | | |  |_____| | | |  | |_____| | |  | | |_____| |
|_|_|_|_|_|_|  |_____|_|_|_|  |_|_____|_|_|  |_|_|_____|_|
._._._._____.  ._____._____.  .___.___.___.  ._____._____.
| | | |_____|  |_____|_____|  |   |   |   |  |_____|_____|
| | | |_____|  |_____|_____|  |___|_._|___|  |   |   |   |
|_|_|_|_____|  |_____|_____|  |_____|_____|  |___|___|___|
		

Crossrefs

Column k=3 of A219967.

Programs

  • Maple
    gf:= -(x-1)^2*(x^2+x+1)^2 / (x^9+x^7-x^6-2*x^4+3*x^3+x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..50);

Formula

G.f.: -(x-1)^2*(x^2+x+1)^2 / (x^9+x^7-x^6-2*x^4+3*x^3+x-1).
a(n) = 1 + Sum_{i=0..n-3} a(i)*(1 + B*(B-1)) where B=floor((n-i)/3). E.g. a(7) = 1 + a(0)*3 + a(1)*3 + a(2)*1 + a(3)*1 + a(4)*1 = 13. - Greg Dresden and Andrew Chang, Aug 23 2022

A219969 Number of tilings of a 5 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 2, 4, 8, 28, 65, 170, 456, 1177, 3068, 8016, 21028, 54696, 142908, 374527, 976022, 2551162, 6674999, 17422250, 45536000, 119053392, 310969076, 812695944, 2124175469, 5550025712, 14503987368, 37905500955, 99050326532, 258846292750, 676453686574
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			a(4) = 8, because there are 8 tilings of a 5 X 4 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._____._.  ._._____.  ._._._._.  ._._.___.
|_____| |  | |_____|  | | | | |  | | |   |
|_____| |  | |_____|  | | | | |  | | |___|
|_____|_|  |_|_____|  |_|_|_|_|  |_|_| | |
|   |   |  |   |   |  |   |   |  |   | | |
|___|___|  |___|___|  |___|___|  |___|_|_|
.___.___.  .___.___.  .___.___.  .___._._.
|   |   |  |   |   |  |   |   |  |   | | |
|___|___|  |___|___|  |___|___|  |___| | |
|_____| |  | |_____|  | | | | |  | | |_|_|
|_____| |  | |_____|  | | | | |  | | |   |
|_____|_|  |_|_____|  |_|_|_|_|  |_|_|___|
		

Crossrefs

Column k=5 of A219967.

Programs

  • Maple
    gf:= -(x^81 -7*x^78 +41*x^75 +x^73 -198*x^72 +2*x^71 -10*x^70 +845*x^69 -16*x^68 +43*x^67 -3156*x^66 +86*x^65 -96*x^64 +10444*x^63 -331*x^62 +68*x^61 -30704*x^60 +991*x^59 +335*x^58 +80592*x^57 -2465*x^56 -1564*x^55 -189222*x^54 +5338*x^53 +3968*x^52 +397848*x^51 -10648*x^50 -7680*x^49 -747706*x^48 +20835*x^47 +13544*x^46 +1251990*x^45 -40621*x^44 -24871*x^43 -1858564*x^42 +74789*x^41 +47191*x^40 +2433033*x^39
    -121355*x^38 -82950*x^37 -2791787*x^36 +165741*x^35 +123957*x^34 +2789367*x^33 -185980*x^32 -151345*x^31 -2407340*x^30 +169318*x^29 +148399*x^28 +1776356*x^27 -123893*x^26 -115498*x^25 -1105831*x^24 +71944*x^23 +70340*x^22 +570573*x^21 -32495*x^20 -32842*x^19 -238424*x^18 +11077*x^17 +11417*x^16 +78374*x^15 -2727*x^14 -2832*x^13 -19542*x^12 +453*x^11 +469*x^10 +3523*x^9 -45*x^8 -46*x^7 -428*x^6 +2*x^5 +2*x^4 +31*x^3 -1)*(x -1)^2*(x^2 +x +1)^2 /
    (x^90 +2*x^88 -9*x^87 +6*x^86 -26*x^85 +63*x^84 -76*x^83 +183*x^82 -367*x^81 +546*x^80 -954*x^79 +1830*x^78 -2884*x^77 +3929*x^76 -7765*x^75 +12072*x^74 -13027*x^73 +28518*x^72 -41491*x^71 +35304*x^70 -91935*x^69 +119871*x^68 -78938*x^67 +262994*x^66 -296401*x^65 +145610*x^64 -672074*x^63 +635235*x^62 -216634*x^61 +1540902*x^60 -1188099*x^59 +240723*x^58 -3175160*x^57 +1942824*x^56 -139170*x^55 +5876128*x^54 -2771239*x^53 -161593*x^52 -9748106*x^51 +3426351*x^50 +683453*x^49
    +14467189*x^48 -3628004*x^47 -1368932*x^46 -19177263*x^45 +3210694*x^44 +2087516*x^43 +22669949*x^42 -2240035*x^41 -2665512*x^40 -23841863*x^39 +1009987*x^38 +2932037*x^37 +22213131*x^36 +87664*x^35 -2788225*x^34 -18207162*x^33 -751490*x^32 +2278157*x^31 +13000933*x^30 +911285*x^29 -1585085*x^28 -7987552*x^27 -725314*x^26 +928121*x^25 +4159353*x^24 +433937*x^23 -448956*x^22 -1802433*x^21 -202164*x^20 +174393*x^19 +635455*x^18 +73626*x^17 -52289*x^16 -177158*x^15 -20603*x^14 +11476*x^13 +37649*x^12 +4257*x^11 -1709*x^10 -5802*x^9 -605*x^8 +152*x^7 +602*x^6 +52*x^5 -6*x^4 -37*x^3 -2*x^2 +1):
    a:= n-> coeff (series (gf, x, n+1), x, n):
    seq (a(n), n=0..50);

Formula

G.f.: see Maple program.

A219970 Number of tilings of a 6 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 2, 8, 21, 65, 267, 804, 2530, 9407, 29876, 96530, 337607, 1100968, 3612017, 12284181, 40538721, 133971666, 450045654, 1492504271, 4949649998, 16537407509, 54951656907, 182545459254, 608458757050, 2023395434235, 6727009100372, 22399013790607
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			a(2) = 2, because there are 2 tilings of a 6 X 2 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._._.   .___.
| | |   |   |
| | |   |___|
|_|_|   |   |
| | |   |___|
| | |   |   |
|_|_|   |___|
		

Crossrefs

Column k=6 of A219967.

A219971 Number of tilings of a 7 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 3, 13, 31, 170, 804, 2744, 12343, 55657, 214485, 923990, 4008013, 16241904, 68963484, 293830787, 1216393406, 5135225641, 21711233759, 90692128053, 381960417890, 1609647053073, 6749229887672, 28396742081001, 119506154362773, 501879008939056
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			a(2) = 3, because there are 3 tilings of a 7 X 2 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._._.   .___.   .___.
| | |   |   |   |   |
| | |   |___|   |___|
|_|_|   | | |   |   |
|   |   | | |   |___|
|___|   |_|_|   | | |
|   |   |   |   | | |
|___|   |___|   |_|_|
		

Crossrefs

Column k=7 of A219967.

A219972 Number of tilings of an 8 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 4, 19, 70, 456, 2530, 12343, 66653, 372429, 1910822, 10162059, 55583124, 291195073, 1550518247, 8363883923, 44269140576, 235940940726, 1264437357202, 6723179849519, 35846240541026, 191571690239220, 1020536749613565, 5442225134864810, 29051213879574079
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			a(2) = 4, because there are 4 tilings of an 8 X 2 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
.___.   .___.   .___.   .___.
|   |   |   |   | | |   | | |
|___|   |___|   | | |   | | |
|   |   | | |   |_|_|   |_|_|
|___|   | | |   |   |   | | |
|   |   |_|_|   |___|   | | |
|___|   | | |   | | |   |_|_|
|   |   | | |   | | |   |   |
|___|   |_|_|   |_|_|   |___|
		

Crossrefs

Column k=8 of A219967.

A219973 Number of tilings of a 9 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 5, 35, 165, 1177, 9407, 55657, 372429, 2766100, 17671945, 118674685, 837152398, 5531816082, 37328192350, 257252634864, 1725117502706, 11666552132346, 79612474584518, 537157628862720, 3636277021289585, 24711657036469040, 167150255133278869
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			a(2) = 5, because there are 5 tilings of a 9 X 2 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
.___.   .___.   .___.   .___.   .___.
| | |   | | |   |   |   |   |   |   |
| | |   | | |   |___|   |___|   |___|
|_|_|   |_|_|   | | |   |   |   |   |
| | |   |   |   | | |   |___|   |___|
| | |   |___|   |_|_|   | | |   |   |
|_|_|   |   |   |   |   | | |   |___|
| | |   |___|   |___|   |_|_|   | | |
| | |   |   |   |   |   |   |   | | |
|_|_|   |___|   |___|   |___|   |_|_|
		

Crossrefs

Column k=9 of A219967.

A219975 Number of tilings of an n X n square using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 1, 2, 3, 28, 267, 2744, 66653, 2766100, 141365332, 13305552648, 2149055591278, 493880634209398, 192321197859269019, 124351154502319720238, 122893248485909264026734, 199405053536180281080458422, 527809383857797224536981601752
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			a(4) = 3, because there are 3 tilings of a 4 X 4 square using straight (3 X 1) trominoes and 2 X 2 tiles:
  ._._____.  ._____._.  ._._._._.
  | |_____|  |_____| |  | . | . |
  | | . | |  | | . | |  |___|___|
  |_|___| |  | |___|_|  | . | . |
  |_____|_|  |_|_____|  |___|___|  .
		

Crossrefs

Main diagonal of A219967.
Cf. A233807.

Extensions

a(12) from Alois P. Heinz, Sep 24 2014
a(13)-a(18) from Martin Fuller, Apr 09 2025

A219974 Number of tilings of a 10 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 7, 58, 286, 3068, 29876, 214485, 1910822, 17671945, 141365332, 1225043571, 10871708273, 90688536786, 781019641877, 6800784990468, 57716277595775, 496096480109463, 4284929501626939, 36621478929328140, 314572431365390797, 2707867101849205129
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2012

Keywords

Examples

			a(2) = 7, because there are 7 tilings of a 10 X 2 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
.___.   .___.   .___.   .___.   .___.   .___.   .___.
|   |   |   |   |   |   | | |   |   |   | | |   | | |
|___|   |___|   |___|   | | |   |___|   | | |   | | |
|   |   |   |   | | |   |_|_|   | | |   |_|_|   |_|_|
|___|   |___|   | | |   |   |   | | |   |   |   | | |
|   |   | | |   |_|_|   |___|   |_|_|   |___|   | | |
|___|   | | |   |   |   |   |   | | |   | | |   |_|_|
|   |   |_|_|   |___|   |___|   | | |   | | |   |   |
|___|   | | |   | | |   | | |   |_|_|   |_|_|   |___|
|   |   | | |   | | |   | | |   |   |   |   |   |   |
|___|   |_|_|   |_|_|   |_|_|   |___|   |___|   |___|
		

Crossrefs

Column k=10 of A219967.
Showing 1-9 of 9 results.