A219978 Numbers k (>= 1) such that A007781(k-1) = k^k - (k-1)^(k-1) is semiprime.
5, 6, 13, 16, 18, 21, 22, 28, 29, 37, 46, 60, 71, 84
Offset: 1
Examples
a(1) = 5 because 5^5 - 4^4 = 2869 = 19 * 151 is semiprime. a(2) = 6 because 6^6 - 5^5 = 43531 = 101 * 431. a(3) = 13 because 13^13 - 12^12 = 293959006143997 = 28201 * 10423708597. a(4) = 16 because 16^16 - 15^15 = 18008850183328692241 = 109 * 165218809021364149.
Links
- Eric W. Weisstein, Power Difference Prime
Programs
-
Mathematica
Flatten[Position[Differences[Table[n^n,{n,85}]],?(PrimeOmega[#]==2&)]]+1 (* _Harvey P. Dale, Aug 29 2021 *)
-
PARI
isok(n) = bigomega(n^n - (n-1)^(n-1)) == 2; \\ Michel Marcus, Feb 11 2020
Extensions
a(9)-a(13) from Charles R Greathouse IV, Dec 02 2012
a(14) from Charles R Greathouse IV, Dec 04 2012
Comments