A190639
Centuries whose prime pattern repeats in the next century.
Original entry on oeis.org
473267, 726760, 1773439, 1808828, 1919128, 2131583, 2165420, 2339971, 2390652, 2518488, 2802591, 2844914, 2982584, 2996184, 3183263, 3193175, 3250986, 3418185, 3428241, 3633472, 3909324, 3953449, 4280455, 4303819, 4373399, 4658285, 4728653, 4978360, 5165402, 5254365
Offset: 1
The first value refers to two consecutive prime-free centuries (cf. A181098); the second value is such that 100*a(2)+17 and 100*a(2)+117 are the only primes between 100*a(2) and 100*(a(2)+2). See the link for more examples.
- Donovan Johnson, Table of n, a(n) for n = 1..1000
- J. K. Andersen, in reply to R. Wood, Re: First repetition of prime pattern within "centuries", Yahoo group "primenumbers", May 15, 2011.
- Jens Kruse Andersen, Phil Carmody, Maximilian Hasler, First repetition of prime pattern within "centuries", digest of 11 messages in primenumbers Yahoo group, May 15, 2011.
a(1)-a(5) computed by J. K. Andersen, May 15 2011
A220063
Decades whose semiprime pattern is the same as semiprime pattern in the previous decade.
Original entry on oeis.org
104, 389, 435, 438, 529, 658, 884, 1110, 1183, 1533, 1548, 1557, 1669, 1799, 1824, 1825, 1915, 1993, 2011, 2076, 2085, 2153, 2313, 2355, 2372, 2617, 2628, 2648, 2673, 3204, 3234, 3258, 3280, 3295, 3373, 3415, 3513, 3601, 3636, 3906, 3931, 3936, 4125, 4154
Offset: 1
a(1) = 104 because the decade (1030..1039) has the same semiprime pattern as the previous decade: (1020..1029), namely that each has only a single semiprime, respectively 1027 = 13 * 79 and 1037 = 17 * 61. [corrected by _Bobby Jacobs_, Sep 28 2016]
-
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nn = 50000; s = Table[SemiPrimeQ[n], {n, nn}]; t = Partition[s, 10]; t2 = {}; Do[If[t[[i]] == t[[i - 1]], AppendTo[t2, i]], {i, 2, Length[t]}]; t2 (* T. D. Noe, Dec 11 2012 *)
semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := semiPrimeQ@# & /@ (10 n + Range@9); a = f[0]; k = 1; lst = {}; While[k < 10001, b = f[k]; If[a == b, AppendTo[lst, k]]; a = b; k++]; lst (* Robert G. Wilson v, Dec 11 2012 *)
A258275
a(n) = smallest number k > n such that the interval k*100 to k*100+99 has exactly the same prime pattern as the interval n*100 to n*100+99 (or 0 if no such term is known).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4812895043702, 0, 38905562023, 0, 2406071834559, 0, 834998571515, 15367548589719, 274894696197322, 0, 3339850458, 0, 0, 90345210525, 127636130731, 0, 0, 7916673590887, 498009080381, 1128063679395, 616923037, 301998772331
Offset: 1
a(13) = 38905562023 because the primes between 1300 and 1399 are 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381 and 1399 and 38905562023 is the least century>13 that has exactly the same prime pattern: 3890556202301, 3890556202303, 3890556202307, 3890556202319, 3890556202321, 3890556202327, 3890556202361, 3890556202367, 3890556202373, 3890556202381, 3890556202399.
Showing 1-3 of 3 results.
Comments